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Preface

‘The only way not to succeed is not to try.’

Edward Teller

Another book on artificial intelligence . . . I’ve already seen so many of them.

Why should I bother with this one? What makes this book different from the

others?

Each year hundreds of books and doctoral theses extend our knowledge of

computer, or artificial, intelligence. Expert systems, artificial neural networks,

fuzzy systems and evolutionary computation are major technologies used in

intelligent systems. Hundreds of tools support these technologies, and thou-

sands of scientific papers continue to push their boundaries. The contents of any

chapter in this book can be, and in fact is, the subject of dozens of monographs.

However, I wanted to write a book that would explain the basics of intelligent

systems, and perhaps even more importantly, eliminate the fear of artificial

intelligence.

Most of the literature on artificial intelligence is expressed in the jargon of

computer science, and crowded with complex matrix algebra and differential

equations. This, of course, gives artificial intelligence an aura of respectability,

and until recently kept non-computer scientists at bay. But the situation has

changed!

The personal computer has become indispensable in our everyday life. We use

it as a typewriter and a calculator, a calendar and a communication system, an

interactive database and a decision-support system. And we want more. We want

our computers to act intelligently! We see that intelligent systems are rapidly

coming out of research laboratories, and we want to use them to our advantage.

What are the principles behind intelligent systems? How are they built? What

are intelligent systems useful for? How do we choose the right tool for the job?

These questions are answered in this book.

Unlike many books on computer intelligence, this one shows that most ideas

behind intelligent systems are wonderfully simple and straightforward. The book

is based on lectures given to students who have little knowledge of calculus. And

readers do not need to learn a programming language! The material in this book

has been extensively tested through several courses taught by the author for the



past decade. Typical questions and suggestions from my students influenced

the way this book was written.

The book is an introduction to the field of computer intelligence. It covers

rule-based expert systems, fuzzy expert systems, frame-based expert systems,

artificial neural networks, evolutionary computation, hybrid intelligent systems

and knowledge engineering.

In a university setting, this book provides an introductory course for under-

graduate students in computer science, computer information systems, and

engineering. In the courses I teach, my students develop small rule-based and

frame-based expert systems, design a fuzzy system, explore artificial neural

networks, and implement a simple problem as a genetic algorithm. They use

expert system shells (Leonardo, XpertRule, Level5 Object and Visual Rule

Studio), MATLAB Fuzzy Logic Toolbox and MATLAB Neural Network Toolbox.

I chose these tools because they can easily demonstrate the theory being

presented. However, the book is not tied to any specific tool; the examples given

in the book are easy to implement with different tools.

This book is also suitable as a self-study guide for non-computer science

professionals. For them, the book provides access to the state of the art in

knowledge-based systems and computational intelligence. In fact, this book is

aimed at a large professional audience: engineers and scientists, managers and

businessmen, doctors and lawyers – everyone who faces challenging problems

and cannot solve them by using traditional approaches, everyone who wants to

understand the tremendous achievements in computer intelligence. The book

will help to develop a practical understanding of what intelligent systems can

and cannot do, discover which tools are most relevant for your task and, finally,

how to use these tools.

The book consists of nine chapters.

In Chapter 1, we briefly discuss the history of artificial intelligence from the

era of great ideas and great expectations in the 1960s to the disillusionment and

funding cutbacks in the early 1970s; from the development of the first expert

systems such as DENDRAL, MYCIN and PROSPECTOR in the seventies to the

maturity of expert system technology and its massive applications in different

areas in the 1980s and 1990s; from a simple binary model of neurons proposed in

the 1940s to a dramatic resurgence of the field of artificial neural networks in the

1980s; from the introduction of fuzzy set theory and its being ignored by

the West in the 1960s to numerous ‘fuzzy’ consumer products offered by the

Japanese in the 1980s and world-wide acceptance of ‘soft’ computing and

computing with words in the 1990s.

In Chapter 2, we present an overview of rule-based expert systems. We briefly

discuss what knowledge is, and how experts express their knowledge in the form

of production rules. We identify the main players in the expert system develop-

ment team and show the structure of a rule-based system. We discuss

fundamental characteristics of expert systems and note that expert systems can

make mistakes. Then we review the forward and backward chaining inference

techniques and debate conflict resolution strategies. Finally, the advantages and

disadvantages of rule-based expert systems are examined.
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In Chapter 3, we present two uncertainty management techniques used in

expert systems: Bayesian reasoning and certainty factors. We identify the main

sources of uncertain knowledge and briefly review probability theory. We consider

the Bayesian method of accumulating evidence and develop a simple expert

system based on the Bayesian approach. Then we examine the certainty factors

theory (a popular alternative to Bayesian reasoning) and develop an expert system

based on evidential reasoning. Finally, we compare Bayesian reasoning and

certainty factors, and determine appropriate areas for their applications.

In Chapter 4, we introduce fuzzy logic and discuss the philosophical ideas

behind it. We present the concept of fuzzy sets, consider how to represent a fuzzy

set in a computer, and examine operations of fuzzy sets. We also define linguistic

variables and hedges. Then we present fuzzy rules and explain the main differences

between classical and fuzzy rules. We explore two fuzzy inference techniques –

Mamdani and Sugeno – and suggest appropriate areas for their application. Finally,

we introduce the main steps in developing a fuzzy expert system, and illustrate the

theory through the actual process of building and tuning a fuzzy system.

In Chapter 5, we present an overview of frame-based expert systems. We

consider the concept of a frame and discuss how to use frames for knowledge

representation. We find that inheritance is an essential feature of frame

based systems. We examine the application of methods, demons and rules. Finally,

we consider the development of a frame-based expert system through an example.

In Chapter 6, we introduce artificial neural networks and discuss the basic

ideas behind machine learning. We present the concept of a perceptron as a

simple computing element and consider the perceptron learning rule. We

explore multilayer neural networks and discuss how to improve the computa-

tional efficiency of the back-propagation learning algorithm. Then we introduce

recurrent neural networks, consider the Hopfield network training algorithm

and bidirectional associative memory (BAM). Finally, we present self-organising

neural networks and explore Hebbian and competitive learning.

In Chapter 7, we present an overview of evolutionary computation. We consider

genetic algorithms, evolution strategies and genetic programming. We introduce the

main steps in developing a genetic algorithm, discuss why genetic algorithms work,

and illustrate the theory through actual applications of genetic algorithms. Then we

present a basic concept of evolutionary strategies and determine the differences

between evolutionary strategies and genetic algorithms. Finally, we consider genetic

programming and its application to real problems.

In Chapter 8, we consider hybrid intelligent systems as a combination of

different intelligent technologies. First we introduce a new breed of expert

systems, called neural expert systems, which combine neural networks and rule-

based expert systems. Then we consider a neuro-fuzzy system that is functionally

equivalent to the Mamdani fuzzy inference model, and an adaptive neuro-fuzzy

inference system (ANFIS), equivalent to the Sugeno fuzzy inference model. Finally,

we discuss evolutionary neural networks and fuzzy evolutionary systems.

In Chapter 9, we consider knowledge engineering and data mining. First we

discuss what kind of problems can be addressed with intelligent systems and

introduce six main phases of the knowledge engineering process. Then we study
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typical applications of intelligent systems, including diagnosis, classification,

decision support, pattern recognition and prediction. Finally, we examine an

application of decision trees in data mining.

The book also has an appendix and a glossary. The appendix provides a list

of commercially available AI tools. The glossary contains definitions of over

250 terms used in expert systems, fuzzy logic, neural networks, evolutionary

computation, knowledge engineering and data mining.

I hope that the reader will share my excitement on the subject of artificial

intelligence and soft computing and will find this book useful.

The website can be accessed at: http://www.booksites.net/negnevitsky

Michael Negnevitsky

Hobart, Tasmania, Australia

February 2001
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Preface to the second edition

The main objective of the book remains the same as in the first edition – to

provide the reader with practical understanding of the field of computer

intelligence. It is intended as an introductory text suitable for a one-semester

course, and assumes the students have no programming experience.

In terms of the coverage, in this edition we demonstrate several new

applications of intelligent tools for solving specific problems. The changes are

in the following chapters:

. In Chapter 2, we introduce a new demonstration rule-based expert system,

MEDIA ADVISOR.

. In Chapter 9, we add a new case study on classification neural networks with

competitive learning.

. In Chapter 9, we introduce a section ‘Will genetic algorithms work for my

problem?’. The section includes a case study with the travelling salesman

problem.

. Also in Chapter 9, we add a new section ‘Will a hybrid intelligent system work

for my problem?’. This section includes two case studies: the first covers a

neuro-fuzzy decision-support system with a heterogeneous structure, and the

second explores an adaptive neuro-fuzzy inference system (ANFIS) with a

homogeneous structure.

Finally, we have expanded the book’s references and bibliographies, and updated

the list of AI tools and vendors in the appendix.

Michael Negnevitsky

Hobart, Tasmania, Australia

January 2004
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1Introduction to knowledge-
based intelligent systems

In which we consider what it means to be intelligent and whether

machines could be such a thing.

1.1 Intelligent machines, or what machines can do

Philosophers have been trying for over two thousand years to understand and

resolve two big questions of the universe: how does a human mind work, and

can non-humans have minds? However, these questions are still unanswered.

Some philosophers have picked up the computational approach originated by

computer scientists and accepted the idea that machines can do everything that

humans can do. Others have openly opposed this idea, claiming that such

highly sophisticated behaviour as love, creative discovery and moral choice will

always be beyond the scope of any machine.

The nature of philosophy allows for disagreements to remain unresolved. In

fact, engineers and scientists have already built machines that we can call

‘intelligent’. So what does the word ‘intelligence’ mean? Let us look at a

dictionary definition.

1 Someone’s intelligence is their ability to understand and learn things.

2 Intelligence is the ability to think and understand instead of doing things

by instinct or automatically.

(Essential English Dictionary, Collins, London, 1990)

Thus, according to the first definition, intelligence is the quality possessed by

humans. But the second definition suggests a completely different approach and

gives some flexibility; it does not specify whether it is someone or something

that has the ability to think and understand. Now we should discover what

thinking means. Let us consult our dictionary again.

Thinking is the activity of using your brain to consider a problem or to create

an idea.

(Essential English Dictionary, Collins, London, 1990)



So, in order to think, someone or something has to have a brain, or in other

words, an organ that enables someone or something to learn and understand

things, to solve problems and to make decisions. So we can define intelligence as

‘the ability to learn and understand, to solve problems and to make decisions’.

The very question that asks whether computers can be intelligent, or whether

machines can think, came to us from the ‘dark ages’ of artificial intelligence

(from the late 1940s). The goal of artificial intelligence (AI) as a science is to

make machines do things that would require intelligence if done by humans

(Boden, 1977). Therefore, the answer to the question ‘Can machines think?’ was

vitally important to the discipline. However, the answer is not a simple ‘Yes’ or

‘No’, but rather a vague or fuzzy one. Your everyday experience and common

sense would have told you that. Some people are smarter in some ways than

others. Sometimes we make very intelligent decisions but sometimes we also

make very silly mistakes. Some of us deal with complex mathematical and

engineering problems but are moronic in philosophy and history. Some people

are good at making money, while others are better at spending it. As humans, we

all have the ability to learn and understand, to solve problems and to make

decisions; however, our abilities are not equal and lie in different areas. There-

fore, we should expect that if machines can think, some of them might be

smarter than others in some ways.

One of the earliest and most significant papers on machine intelligence,

‘Computing machinery and intelligence’, was written by the British mathema-

tician Alan Turing over fifty years ago (Turing, 1950). However, it has stood up

well to the test of time, and Turing’s approach remains universal.

Alan Turing began his scientific career in the early 1930s by rediscovering the

Central Limit Theorem. In 1937 he wrote a paper on computable numbers, in

which he proposed the concept of a universal machine. Later, during the Second

World War, he was a key player in deciphering Enigma, the German military

encoding machine. After the war, Turing designed the ‘Automatic Computing

Engine’. He also wrote the first program capable of playing a complete chess

game; it was later implemented on the Manchester University computer.

Turing’s theoretical concept of the universal computer and his practical experi-

ence in building code-breaking systems equipped him to approach the key

fundamental question of artificial intelligence. He asked: Is there thought

without experience? Is there mind without communication? Is there language

without living? Is there intelligence without life? All these questions, as you can

see, are just variations on the fundamental question of artificial intelligence, Can

machines think?

Turing did not provide definitions of machines and thinking, he just avoided

semantic arguments by inventing a game, the Turing imitation game. Instead

of asking, ‘Can machines think?’, Turing said we should ask, ‘Can machines pass

a behaviour test for intelligence?’ He predicted that by the year 2000, a computer

could be programmed to have a conversation with a human interrogator for five

minutes and would have a 30 per cent chance of deceiving the interrogator that

it was a human. Turing defined the intelligent behaviour of a computer as the

ability to achieve the human-level performance in cognitive tasks. In other

INTRODUCTION TO KNOWLEDGE-BASED INTELLIGENT SYSTEMS2



words, a computer passes the test if interrogators cannot distinguish the

machine from a human on the basis of the answers to their questions.

The imitation game proposed by Turing originally included two phases. In

the first phase, shown in Figure 1.1, the interrogator, a man and a woman are

each placed in separate rooms and can communicate only via a neutral medium

such as a remote terminal. The interrogator’s objective is to work out who is the

man and who is the woman by questioning them. The rules of the game are

that the man should attempt to deceive the interrogator that he is the woman,

while the woman has to convince the interrogator that she is the woman.

In the second phase of the game, shown in Figure 1.2, the man is replaced by a

computer programmed to deceive the interrogator as the man did. It would even

be programmed to make mistakes and provide fuzzy answers in the way a human

would. If the computer can fool the interrogator as often as the man did, we may

say this computer has passed the intelligent behaviour test.

Physical simulation of a human is not important for intelligence. Hence, in

the Turing test the interrogator does not see, touch or hear the computer and is

therefore not influenced by its appearance or voice. However, the interrogator

is allowed to ask any questions, even provocative ones, in order to identify

the machine. The interrogator may, for example, ask both the human and the

Figure 1.1 Turing imitation game: phase 1

Figure 1.2 Turing imitation game: phase 2
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machine to perform complex mathematical calculations, expecting that the

computer will provide a correct solution and will do it faster than the human.

Thus, the computer will need to know when to make a mistake and when to

delay its answer. The interrogator also may attempt to discover the emotional

nature of the human, and thus, he might ask both subjects to examine a short

novel or poem or even painting. Obviously, the computer will be required here

to simulate a human’s emotional understanding of the work.

The Turing test has two remarkable qualities that make it really universal.

. By maintaining communication between the human and the machine via

terminals, the test gives us an objective standard view on intelligence. It

avoids debates over the human nature of intelligence and eliminates any bias

in favour of humans.

. The test itself is quite independent from the details of the experiment. It can

be conducted either as a two-phase game as just described, or even as a single-

phase game in which the interrogator needs to choose between the human

and the machine from the beginning of the test. The interrogator is also free

to ask any question in any field and can concentrate solely on the content of

the answers provided.

Turing believed that by the end of the 20th century it would be possible to

program a digital computer to play the imitation game. Although modern

computers still cannot pass the Turing test, it provides a basis for the verification

and validation of knowledge-based systems. A program thought intelligent in

some narrow area of expertise is evaluated by comparing its performance with

the performance of a human expert.

Our brain stores the equivalent of over 1018 bits and can process information

at the equivalent of about 1015 bits per second. By 2020, the brain will probably

be modelled by a chip the size of a sugar cube – and perhaps by then there will be

a computer that can play – even win – the Turing imitation game. However, do

we really want the machine to perform mathematical calculations as slowly and

inaccurately as humans do? From a practical point of view, an intelligent

machine should help humans to make decisions, to search for information, to

control complex objects, and finally to understand the meaning of words. There

is probably no point in trying to achieve the abstract and elusive goal of

developing machines with human-like intelligence. To build an intelligent

computer system, we have to capture, organise and use human expert knowl-

edge in some narrow area of expertise.

1.2 The history of artificial intelligence, or from the ‘Dark
Ages’ to knowledge-based systems

Artificial intelligence as a science was founded by three generations of research-

ers. Some of the most important events and contributors from each generation

are described next.

INTRODUCTION TO KNOWLEDGE-BASED INTELLIGENT SYSTEMS4



1.2.1 The ‘Dark Ages’, or the birth of artificial intelligence (1943–56)

The first work recognised in the field of artificial intelligence (AI) was presented

by Warren McCulloch and Walter Pitts in 1943. McCulloch had degrees in

philosophy and medicine from Columbia University and became the Director of

the Basic Research Laboratory in the Department of Psychiatry at the University

of Illinois. His research on the central nervous system resulted in the first major

contribution to AI: a model of neurons of the brain.

McCulloch and his co-author Walter Pitts, a young mathematician, proposed

a model of artificial neural networks in which each neuron was postulated as

being in binary state, that is, in either on or off condition (McCulloch and Pitts,

1943). They demonstrated that their neural network model was, in fact,

equivalent to the Turing machine, and proved that any computable function

could be computed by some network of connected neurons. McCulloch and Pitts

also showed that simple network structures could learn.

The neural network model stimulated both theoretical and experimental

work to model the brain in the laboratory. However, experiments clearly

demonstrated that the binary model of neurons was not correct. In fact,

a neuron has highly non-linear characteristics and cannot be considered as a

simple two-state device. Nonetheless, McCulloch, the second ‘founding father’

of AI after Alan Turing, had created the cornerstone of neural computing and

artificial neural networks (ANN). After a decline in the 1970s, the field of ANN

was revived in the late 1980s.

The third founder of AI was John von Neumann, the brilliant Hungarian-

born mathematician. In 1930, he joined the Princeton University, lecturing in

mathematical physics. He was a colleague and friend of Alan Turing. During the

Second World War, von Neumann played a key role in the Manhattan Project

that built the nuclear bomb. He also became an adviser for the Electronic

Numerical Integrator and Calculator (ENIAC) project at the University of

Pennsylvania and helped to design the Electronic Discrete Variable Automatic

Computer (EDVAC), a stored program machine. He was influenced by

McCulloch and Pitts’s neural network model. When Marvin Minsky and Dean

Edmonds, two graduate students in the Princeton mathematics department,

built the first neural network computer in 1951, von Neumann encouraged and

supported them.

Another of the first-generation researchers was Claude Shannon. He gradu-

ated from Massachusetts Institute of Technology (MIT) and joined Bell

Telephone Laboratories in 1941. Shannon shared Alan Turing’s ideas on the

possibility of machine intelligence. In 1950, he published a paper on chess-

playing machines, which pointed out that a typical chess game involved about

10120 possible moves (Shannon, 1950). Even if the new von Neumann-type

computer could examine one move per microsecond, it would take 3 � 10106

years to make its first move. Thus Shannon demonstrated the need to use

heuristics in the search for the solution.

Princeton University was also home to John McCarthy, another founder of AI.

He convinced Martin Minsky and Claude Shannon to organise a summer
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workshop at Dartmouth College, where McCarthy worked after graduating from

Princeton. In 1956, they brought together researchers interested in the study of

machine intelligence, artificial neural nets and automata theory. The workshop

was sponsored by IBM. Although there were just ten researchers, this workshop

gave birth to a new science called artificial intelligence. For the next twenty

years the field of AI would be dominated by the participants at the Dartmouth

workshop and their students.

1.2.2 The rise of artificial intelligence, or the era of great expectations

(1956–late 1960s)

The early years of AI are characterised by tremendous enthusiasm, great ideas

and very limited success. Only a few years before, computers had been intro-

duced to perform routine mathematical calculations, but now AI researchers

were demonstrating that computers could do more than that. It was an era of

great expectations.

John McCarthy, one of the organisers of the Dartmouth workshop and the

inventor of the term ‘artificial intelligence’, moved from Dartmouth to MIT. He

defined the high-level language LISP – one of the oldest programming languages

(FORTRAN is just two years older), which is still in current use. In 1958,

McCarthy presented a paper, ‘Programs with Common Sense’, in which he

proposed a program called the Advice Taker to search for solutions to general

problems of the world (McCarthy, 1958). McCarthy demonstrated how his

program could generate, for example, a plan to drive to the airport, based on

some simple axioms. Most importantly, the program was designed to accept new

axioms, or in other words new knowledge, in different areas of expertise without

being reprogrammed. Thus the Advice Taker was the first complete knowledge-

based system incorporating the central principles of knowledge representation

and reasoning.

Another organiser of the Dartmouth workshop, Marvin Minsky, also moved

to MIT. However, unlike McCarthy with his focus on formal logic, Minsky

developed an anti-logical outlook on knowledge representation and reasoning.

His theory of frames (Minsky, 1975) was a major contribution to knowledge

engineering.

The early work on neural computing and artificial neural networks started by

McCulloch and Pitts was continued. Learning methods were improved and Frank

Rosenblatt proved the perceptron convergence theorem, demonstrating that

his learning algorithm could adjust the connection strengths of a perceptron

(Rosenblatt, 1962).

One of the most ambitious projects of the era of great expectations was the

General Problem Solver (GPS) (Newell and Simon, 1961, 1972). Allen Newell and

Herbert Simon from the Carnegie Mellon University developed a general-

purpose program to simulate human problem-solving methods. GPS was

probably the first attempt to separate the problem-solving technique from the

data. It was based on the technique now referred to as means-ends analysis.
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Newell and Simon postulated that a problem to be solved could be defined in

terms of states. The means-ends analysis was used to determine a difference

between the current state and the desirable state or the goal state of the

problem, and to choose and apply operators to reach the goal state. If the goal

state could not be immediately reached from the current state, a new state closer

to the goal would be established and the procedure repeated until the goal state

was reached. The set of operators determined the solution plan.

However, GPS failed to solve complicated problems. The program was based

on formal logic and therefore could generate an infinite number of possible

operators, which is inherently inefficient. The amount of computer time and

memory that GPS required to solve real-world problems led to the project being

abandoned.

In summary, we can say that in the 1960s, AI researchers attempted to

simulate the complex thinking process by inventing general methods for

solving broad classes of problems. They used the general-purpose search

mechanism to find a solution to the problem. Such approaches, now referred

to as weak methods, applied weak information about the problem domain; this

resulted in weak performance of the programs developed.

However, it was also a time when the field of AI attracted great scientists who

introduced fundamental new ideas in such areas as knowledge representation,

learning algorithms, neural computing and computing with words. These ideas

could not be implemented then because of the limited capabilities of computers,

but two decades later they have led to the development of real-life practical

applications.

It is interesting to note that Lotfi Zadeh, a professor from the University of

California at Berkeley, published his famous paper ‘Fuzzy sets’ also in the 1960s

(Zadeh, 1965). This paper is now considered the foundation of the fuzzy set

theory. Two decades later, fuzzy researchers have built hundreds of smart

machines and intelligent systems.

By 1970, the euphoria about AI was gone, and most government funding for

AI projects was cancelled. AI was still a relatively new field, academic in nature,

with few practical applications apart from playing games (Samuel, 1959, 1967;

Greenblatt et al., 1967). So, to the outsider, the achievements would be seen as

toys, as no AI system at that time could manage real-world problems.

1.2.3 Unfulfilled promises, or the impact of reality

(late 1960s–early 1970s)

From the mid-1950s, AI researchers were making promises to build all-purpose

intelligent machines on a human-scale knowledge base by the 1980s, and to

exceed human intelligence by the year 2000. By 1970, however, they realised

that such claims were too optimistic. Although a few AI programs could

demonstrate some level of machine intelligence in one or two toy problems,

almost no AI projects could deal with a wider selection of tasks or more difficult

real-world problems.
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The main difficulties for AI in the late 1960s were:

. Because AI researchers were developing general methods for broad classes

of problems, early programs contained little or even no knowledge about a

problem domain. To solve problems, programs applied a search strategy by

trying out different combinations of small steps, until the right one was

found. This method worked for ‘toy’ problems, so it seemed reasonable that, if

the programs could be ‘scaled up’ to solve large problems, they would finally

succeed. However, this approach was wrong.

Easy, or tractable, problems can be solved in polynomial time, i.e. for a

problem of size n, the time or number of steps needed to find the solution is

a polynomial function of n. On the other hand, hard or intractable problems

require times that are exponential functions of the problem size. While a

polynomial-time algorithm is considered to be efficient, an exponential-time

algorithm is inefficient, because its execution time increases rapidly with the

problem size. The theory of NP-completeness (Cook, 1971; Karp, 1972),

developed in the early 1970s, showed the existence of a large class of non-

deterministic polynomial problems (NP problems) that are NP-complete. A

problem is called NP if its solution (if one exists) can be guessed and verified

in polynomial time; non-deterministic means that no particular algorithm

is followed to make the guess. The hardest problems in this class are

NP-complete. Even with faster computers and larger memories, these

problems are hard to solve.

. Many of the problems that AI attempted to solve were too broad and too

difficult. A typical task for early AI was machine translation. For example, the

National Research Council, USA, funded the translation of Russian scientific

papers after the launch of the first artificial satellite (Sputnik) in 1957.

Initially, the project team tried simply replacing Russian words with English,

using an electronic dictionary. However, it was soon found that translation

requires a general understanding of the subject to choose the correct words.

This task was too difficult. In 1966, all translation projects funded by the US

government were cancelled.

. In 1971, the British government also suspended support for AI research. Sir

James Lighthill had been commissioned by the Science Research Council of

Great Britain to review the current state of AI (Lighthill, 1973). He did not

find any major or even significant results from AI research, and therefore saw

no need to have a separate science called ‘artificial intelligence’.

1.2.4 The technology of expert systems, or the key to success

(early 1970s–mid-1980s)

Probably the most important development in the 1970s was the realisation

that the problem domain for intelligent machines had to be sufficiently

restricted. Previously, AI researchers had believed that clever search algorithms

and reasoning techniques could be invented to emulate general, human-like,

problem-solving methods. A general-purpose search mechanism could rely on

INTRODUCTION TO KNOWLEDGE-BASED INTELLIGENT SYSTEMS8



elementary reasoning steps to find complete solutions and could use weak

knowledge about domain. However, when weak methods failed, researchers

finally realised that the only way to deliver practical results was to solve typical

cases in narrow areas of expertise by making large reasoning steps.

The DENDRAL program is a typical example of the emerging technology

(Buchanan et al., 1969). DENDRAL was developed at Stanford University

to analyse chemicals. The project was supported by NASA, because an un-

manned spacecraft was to be launched to Mars and a program was required to

determine the molecular structure of Martian soil, based on the mass spectral

data provided by a mass spectrometer. Edward Feigenbaum (a former student

of Herbert Simon), Bruce Buchanan (a computer scientist) and Joshua Lederberg

(a Nobel prize winner in genetics) formed a team to solve this challenging

problem.

The traditional method of solving such problems relies on a generate-

and-test technique: all possible molecular structures consistent with the mass

spectrogram are generated first, and then the mass spectrum is determined

or predicted for each structure and tested against the actual spectrum.

However, this method failed because millions of possible structures could be

generated – the problem rapidly became intractable even for decent-sized

molecules.

To add to the difficulties of the challenge, there was no scientific algorithm

for mapping the mass spectrum into its molecular structure. However, analytical

chemists, such as Lederberg, could solve this problem by using their skills,

experience and expertise. They could enormously reduce the number of possible

structures by looking for well-known patterns of peaks in the spectrum, and

thus provide just a few feasible solutions for further examination. Therefore,

Feigenbaum’s job became to incorporate the expertise of Lederberg into a

computer program to make it perform at a human expert level. Such programs

were later called expert systems. To understand and adopt Lederberg’s knowl-

edge and operate with his terminology, Feigenbaum had to learn basic ideas in

chemistry and spectral analysis. However, it became apparent that Feigenbaum

used not only rules of chemistry but also his own heuristics, or rules-of-thumb,

based on his experience, and even guesswork. Soon Feigenbaum identified one

of the major difficulties in the project, which he called the ‘knowledge acquisi-

tion bottleneck’ – how to extract knowledge from human experts to apply to

computers. To articulate his knowledge, Lederberg even needed to study basics

in computing.

Working as a team, Feigenbaum, Buchanan and Lederberg developed

DENDRAL, the first successful knowledge-based system. The key to their success

was mapping all the relevant theoretical knowledge from its general form to

highly specific rules (‘cookbook recipes’) (Feigenbaum et al., 1971).

The significance of DENDRAL can be summarised as follows:

. DENDRAL marked a major ‘paradigm shift’ in AI: a shift from general-

purpose, knowledge-sparse, weak methods to domain-specific, knowledge-

intensive techniques.
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. The aim of the project was to develop a computer program to attain the level

of performance of an experienced human chemist. Using heuristics in the

form of high-quality specific rules – rules-of-thumb – elicited from human

experts, the DENDRAL team proved that computers could equal an expert in

narrow, defined, problem areas.

. The DENDRAL project originated the fundamental idea of the new method-

ology of expert systems – knowledge engineering, which encompassed

techniques of capturing, analysing and expressing in rules an expert’s

‘know-how’.

DENDRAL proved to be a useful analytical tool for chemists and was marketed

commercially in the United States.

The next major project undertaken by Feigenbaum and others at Stanford

University was in the area of medical diagnosis. The project, called MYCIN,

started in 1972. It later became the Ph.D. thesis of Edward Shortliffe (Shortliffe,

1976). MYCIN was a rule-based expert system for the diagnosis of infectious

blood diseases. It also provided a doctor with therapeutic advice in a convenient,

user-friendly manner.

MYCIN had a number of characteristics common to early expert systems,

including:

. MYCIN could perform at a level equivalent to human experts in the field and

considerably better than junior doctors.

. MYCIN’s knowledge consisted of about 450 independent rules of IF-THEN

form derived from human knowledge in a narrow domain through extensive

interviewing of experts.

. The knowledge incorporated in the form of rules was clearly separated from

the reasoning mechanism. The system developer could easily manipulate

knowledge in the system by inserting or deleting some rules. For example, a

domain-independent version of MYCIN called EMYCIN (Empty MYCIN) was

later produced at Stanford University (van Melle, 1979; van Melle et al., 1981).

It had all the features of the MYCIN system except the knowledge of

infectious blood diseases. EMYCIN facilitated the development of a variety

of diagnostic applications. System developers just had to add new knowledge

in the form of rules to obtain a new application.

MYCIN also introduced a few new features. Rules incorporated in MYCIN

reflected the uncertainty associated with knowledge, in this case with medical

diagnosis. It tested rule conditions (the IF part) against available data or data

requested from the physician. When appropriate, MYCIN inferred the truth of a

condition through a calculus of uncertainty called certainty factors. Reasoning

in the face of uncertainty was the most important part of the system.

Another probabilistic system that generated enormous publicity was

PROSPECTOR, an expert system for mineral exploration developed by the

Stanford Research Institute (Duda et al., 1979). The project ran from 1974 to
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1983. Nine experts contributed their knowledge and expertise. To represent their

knowledge, PROSPECTOR used a combined structure that incorporated rules and

a semantic network. PROSPECTOR had over a thousand rules to represent

extensive domain knowledge. It also had a sophisticated support package

including a knowledge acquisition system.

PROSPECTOR operates as follows. The user, an exploration geologist, is asked

to input the characteristics of a suspected deposit: the geological setting,

structures, kinds of rocks and minerals. Then the program compares these

characteristics with models of ore deposits and, if necessary, queries the user to

obtain additional information. Finally, PROSPECTOR makes an assessment of

the suspected mineral deposit and presents its conclusion. It can also explain the

steps it used to reach the conclusion.

In exploration geology, important decisions are usually made in the face of

uncertainty, with knowledge that is incomplete or fuzzy. To deal with such

knowledge, PROSPECTOR incorporated Bayes’s rules of evidence to propagate

uncertainties through the system. PROSPECTOR performed at the level of an

expert geologist and proved itself in practice. In 1980, it identified a molybde-

num deposit near Mount Tolman in Washington State. Subsequent drilling by a

mining company confirmed the deposit was worth over $100 million. You

couldn’t hope for a better justification for using expert systems.

The expert systems mentioned above have now become classics. A growing

number of successful applications of expert systems in the late 1970s

showed that AI technology could move successfully from the research laboratory

to the commercial environment. During this period, however, most expert

systems were developed with special AI languages, such as LISP, PROLOG and

OPS, based on powerful workstations. The need to have rather expensive

hardware and complicated programming languages meant that the challenge

of expert system development was left in the hands of a few research groups at

Stanford University, MIT, Stanford Research Institute and Carnegie-Mellon

University. Only in the 1980s, with the arrival of personal computers (PCs) and

easy-to-use expert system development tools – shells – could ordinary researchers

and engineers in all disciplines take up the opportunity to develop expert

systems.

A 1986 survey reported a remarkable number of successful expert system

applications in different areas: chemistry, electronics, engineering, geology,

management, medicine, process control and military science (Waterman,

1986). Although Waterman found nearly 200 expert systems, most of the

applications were in the field of medical diagnosis. Seven years later a similar

survey reported over 2500 developed expert systems (Durkin, 1994). The new

growing area was business and manufacturing, which accounted for about 60 per

cent of the applications. Expert system technology had clearly matured.

Are expert systems really the key to success in any field? In spite of a great

number of successful developments and implementations of expert systems in

different areas of human knowledge, it would be a mistake to overestimate the

capability of this technology. The difficulties are rather complex and lie in both

technical and sociological spheres. They include the following:
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. Expert systems are restricted to a very narrow domain of expertise. For

example, MYCIN, which was developed for the diagnosis of infectious blood

diseases, lacks any real knowledge of human physiology. If a patient has more

than one disease, we cannot rely on MYCIN. In fact, therapy prescribed for

the blood disease might even be harmful because of the other disease.

. Because of the narrow domain, expert systems are not as robust and flexible as

a user might want. Furthermore, expert systems can have difficulty recognis-

ing domain boundaries. When given a task different from the typical

problems, an expert system might attempt to solve it and fail in rather

unpredictable ways.

. Expert systems have limited explanation capabilities. They can show the

sequence of the rules they applied to reach a solution, but cannot relate

accumulated, heuristic knowledge to any deeper understanding of the

problem domain.

. Expert systems are also difficult to verify and validate. No general technique

has yet been developed for analysing their completeness and consistency.

Heuristic rules represent knowledge in abstract form and lack even basic

understanding of the domain area. It makes the task of identifying incorrect,

incomplete or inconsistent knowledge very difficult.

. Expert systems, especially the first generation, have little or no ability to learn

from their experience. Expert systems are built individually and cannot be

developed fast. It might take from five to ten person-years to build an expert

system to solve a moderately difficult problem (Waterman, 1986). Complex

systems such as DENDRAL, MYCIN or PROSPECTOR can take over 30 person-

years to build. This large effort, however, would be difficult to justify if

improvements to the expert system’s performance depended on further

attention from its developers.

Despite all these difficulties, expert systems have made the breakthrough and

proved their value in a number of important applications.

1.2.5 How to make a machine learn, or the rebirth of neural networks

(mid-1980s–onwards)

In the mid-1980s, researchers, engineers and experts found that building an

expert system required much more than just buying a reasoning system or expert

system shell and putting enough rules in it. Disillusion about the applicability of

expert system technology even led to people predicting an AI ‘winter’ with

severely squeezed funding for AI projects. AI researchers decided to have a new

look at neural networks.

By the late 1960s, most of the basic ideas and concepts necessary for

neural computing had already been formulated (Cowan, 1990). However, only

in the mid-1980s did the solution emerge. The major reason for the delay was

technological: there were no PCs or powerful workstations to model and
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experiment with artificial neural networks. The other reasons were psychological

and financial. For example, in 1969, Minsky and Papert had mathematically

demonstrated the fundamental computational limitations of one-layer

perceptrons (Minsky and Papert, 1969). They also said there was no reason to

expect that more complex multilayer perceptrons would represent much. This

certainly would not encourage anyone to work on perceptrons, and as a

result, most AI researchers deserted the field of artificial neural networks in the

1970s.

In the 1980s, because of the need for brain-like information processing, as

well as the advances in computer technology and progress in neuroscience, the

field of neural networks experienced a dramatic resurgence. Major contributions

to both theory and design were made on several fronts. Grossberg established a

new principle of self-organisation (adaptive resonance theory), which provided

the basis for a new class of neural networks (Grossberg, 1980). Hopfield

introduced neural networks with feedback – Hopfield networks, which attracted

much attention in the 1980s (Hopfield, 1982). Kohonen published a paper on

self-organised maps (Kohonen, 1982). Barto, Sutton and Anderson published

their work on reinforcement learning and its application in control (Barto et al.,

1983). But the real breakthrough came in 1986 when the back-propagation

learning algorithm, first introduced by Bryson and Ho in 1969 (Bryson and Ho,

1969), was reinvented by Rumelhart and McClelland in Parallel Distributed

Processing: Explorations in the Microstructures of Cognition (Rumelhart and

McClelland, 1986). At the same time, back-propagation learning was also

discovered by Parker (Parker, 1987) and LeCun (LeCun, 1988), and since then

has become the most popular technique for training multilayer perceptrons. In

1988, Broomhead and Lowe found a procedure to design layered feedforward

networks using radial basis functions, an alternative to multilayer perceptrons

(Broomhead and Lowe, 1988).

Artificial neural networks have come a long way from the early models of

McCulloch and Pitts to an interdisciplinary subject with roots in neuroscience,

psychology, mathematics and engineering, and will continue to develop in both

theory and practical applications. However, Hopfield’s paper (Hopfield, 1982)

and Rumelhart and McClelland’s book (Rumelhart and McClelland, 1986) were

the most significant and influential works responsible for the rebirth of neural

networks in the 1980s.

1.2.6 Evolutionary computation, or learning by doing

(early 1970s–onwards)

Natural intelligence is a product of evolution. Therefore, by simulating bio-

logical evolution, we might expect to discover how living systems are propelled

towards high-level intelligence. Nature learns by doing; biological systems are

not told how to adapt to a specific environment – they simply compete for

survival. The fittest species have a greater chance to reproduce, and thereby to

pass their genetic material to the next generation.
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The evolutionary approach to artificial intelligence is based on the com-

putational models of natural selection and genetics. Evolutionary computation

works by simulating a population of individuals, evaluating their performance,

generating a new population, and repeating this process a number of times.

Evolutionary computation combines three main techniques: genetic algo-

rithms, evolutionary strategies, and genetic programming.

The concept of genetic algorithms was introduced by John Holland in the

early 1970s (Holland, 1975). He developed an algorithm for manipulating

artificial ‘chromosomes’ (strings of binary digits), using such genetic operations

as selection, crossover and mutation. Genetic algorithms are based on a solid

theoretical foundation of the Schema Theorem (Holland, 1975; Goldberg, 1989).

In the early 1960s, independently of Holland’s genetic algorithms, Ingo

Rechenberg and Hans-Paul Schwefel, students of the Technical University of

Berlin, proposed a new optimisation method called evolutionary strategies

(Rechenberg, 1965). Evolutionary strategies were designed specifically for solving

parameter optimisation problems in engineering. Rechenberg and Schwefel

suggested using random changes in the parameters, as happens in natural

mutation. In fact, an evolutionary strategies approach can be considered as an

alternative to the engineer’s intuition. Evolutionary strategies use a numerical

optimisation procedure, similar to a focused Monte Carlo search.

Both genetic algorithms and evolutionary strategies can solve a wide range of

problems. They provide robust and reliable solutions for highly complex, non-

linear search and optimisation problems that previously could not be solved at

all (Holland, 1995; Schwefel, 1995).

Genetic programming represents an application of the genetic model of

learning to programming. Its goal is to evolve not a coded representation

of some problem, but rather a computer code that solves the problem. That is,

genetic programming generates computer programs as the solution.

The interest in genetic programming was greatly stimulated by John Koza in

the 1990s (Koza, 1992, 1994). He used genetic operations to manipulate

symbolic code representing LISP programs. Genetic programming offers a

solution to the main challenge of computer science – making computers solve

problems without being explicitly programmed.

Genetic algorithms, evolutionary strategies and genetic programming repre-

sent rapidly growing areas of AI, and have great potential.

1.2.7 The new era of knowledge engineering, or computing with words

(late 1980s–onwards)

Neural network technology offers more natural interaction with the real world

than do systems based on symbolic reasoning. Neural networks can learn, adapt

to changes in a problem’s environment, establish patterns in situations where

rules are not known, and deal with fuzzy or incomplete information. However,

they lack explanation facilities and usually act as a black box. The process of

training neural networks with current technologies is slow, and frequent

retraining can cause serious difficulties.
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Although in some special cases, particularly in knowledge-poor situations,

ANNs can solve problems better than expert systems, the two technologies are

not in competition now. They rather nicely complement each other.

Classic expert systems are especially good for closed-system applications with

precise inputs and logical outputs. They use expert knowledge in the form of

rules and, if required, can interact with the user to establish a particular fact. A

major drawback is that human experts cannot always express their knowledge in

terms of rules or explain the line of their reasoning. This can prevent the expert

system from accumulating the necessary knowledge, and consequently lead to

its failure. To overcome this limitation, neural computing can be used for

extracting hidden knowledge in large data sets to obtain rules for expert systems

(Medsker and Leibowitz, 1994; Zahedi, 1993). ANNs can also be used for

correcting rules in traditional rule-based expert systems (Omlin and Giles,

1996). In other words, where acquired knowledge is incomplete, neural networks

can refine the knowledge, and where the knowledge is inconsistent with some

given data, neural networks can revise the rules.

Another very important technology dealing with vague, imprecise and

uncertain knowledge and data is fuzzy logic. Most methods of handling

imprecision in classic expert systems are based on the probability concept.

MYCIN, for example, introduced certainty factors, while PROSPECTOR incorp-

orated Bayes’ rules to propagate uncertainties. However, experts do not usually

think in probability values, but in such terms as often, generally, sometimes,

occasionally and rarely. Fuzzy logic is concerned with the use of fuzzy values

that capture the meaning of words, human reasoning and decision making. As a

method to encode and apply human knowledge in a form that accurately reflects

an expert’s understanding of difficult, complex problems, fuzzy logic provides

the way to break through the computational bottlenecks of traditional expert

systems.

At the heart of fuzzy logic lies the concept of a linguistic variable. The values

of the linguistic variable are words rather than numbers. Similar to expert

systems, fuzzy systems use IF-THEN rules to incorporate human knowledge, but

these rules are fuzzy, such as:

IF speed is high THEN stopping_distance is long

IF speed is low THEN stopping_distance is short.

Fuzzy logic or fuzzy set theory was introduced by Professor Lotfi Zadeh,

Berkeley’s electrical engineering department chairman, in 1965 (Zadeh, 1965). It

provided a means of computing with words. However, acceptance of fuzzy set

theory by the technical community was slow and difficult. Part of the problem

was the provocative name – ‘fuzzy’ – which seemed too light-hearted to be taken

seriously. Eventually, fuzzy theory, ignored in the West, was taken seriously

in the East – by the Japanese. It has been used successfully since 1987 in

Japanese-designed dishwashers, washing machines, air conditioners, television

sets, copiers and even cars.
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The introduction of fuzzy products gave rise to tremendous interest in

this apparently ‘new’ technology first proposed over 30 years ago. Hundreds of

books and thousands of technical papers have been written on this topic. Some

of the classics are: Fuzzy Sets, Neural Networks and Soft Computing (Yager and

Zadeh, eds, 1994); The Fuzzy Systems Handbook (Cox, 1999); Fuzzy Engineering

(Kosko, 1997); Expert Systems and Fuzzy Systems (Negoita, 1985); and also the

best-seller science book, Fuzzy Thinking (Kosko, 1993), which popularised the

field of fuzzy logic.

Most fuzzy logic applications have been in the area of control engineering.

However, fuzzy control systems use only a small part of fuzzy logic’s power of

knowledge representation. Benefits derived from the application of fuzzy logic

models in knowledge-based and decision-support systems can be summarised as

follows (Cox, 1999; Turban and Aronson, 2000):

. Improved computational power: Fuzzy rule-based systems perform faster

than conventional expert systems and require fewer rules. A fuzzy expert

system merges the rules, making them more powerful. Lotfi Zadeh believes

that in a few years most expert systems will use fuzzy logic to solve highly

nonlinear and computationally difficult problems.

. Improved cognitive modelling: Fuzzy systems allow the encoding of knowl-

edge in a form that reflects the way experts think about a complex problem.

They usually think in such imprecise terms as high and low, fast and slow,

heavy and light, and they also use such terms as very often and almost

never, usually and hardly ever, frequently and occasionally. In order to

build conventional rules, we need to define the crisp boundaries for these

terms, thus breaking down the expertise into fragments. However, this

fragmentation leads to the poor performance of conventional expert systems

when they deal with highly complex problems. In contrast, fuzzy expert

systems model imprecise information, capturing expertise much more closely

to the way it is represented in the expert mind, and thus improve cognitive

modelling of the problem.

. The ability to represent multiple experts: Conventional expert systems are

built for a very narrow domain with clearly defined expertise. It makes the

system’s performance fully dependent on the right choice of experts.

Although a common strategy is to find just one expert, when a more complex

expert system is being built or when expertise is not well defined, multiple

experts might be needed. Multiple experts can expand the domain, syn-

thesise expertise and eliminate the need for a world-class expert, who is likely

to be both very expensive and hard to access. However, multiple experts

seldom reach close agreements; there are often differences in opinions and

even conflicts. This is especially true in areas such as business and manage-

ment where no simple solution exists and conflicting views should be taken

into account. Fuzzy expert systems can help to represent the expertise of

multiple experts when they have opposing views.
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Although fuzzy systems allow expression of expert knowledge in a more

natural way, they still depend on the rules extracted from the experts, and thus

might be smart or dumb. Some experts can provide very clever fuzzy rules – but

some just guess and may even get them wrong. Therefore, all rules must be tested

and tuned, which can be a prolonged and tedious process. For example, it took

Hitachi engineers several years to test and tune only 54 fuzzy rules to guide the

Sendai Subway System.

Using fuzzy logic development tools, we can easily build a simple fuzzy

system, but then we may spend days, weeks and even months trying out new

rules and tuning our system. How do we make this process faster or, in other

words, how do we generate good fuzzy rules automatically?

In recent years, several methods based on neural network technology have

been used to search numerical data for fuzzy rules. Adaptive or neural fuzzy

systems can find new fuzzy rules, or change and tune existing ones based on the

data provided. In other words, data in – rules out, or experience in – common

sense out.

So, where is knowledge engineering heading?

Expert, neural and fuzzy systems have now matured and have been applied to

a broad range of different problems, mainly in engineering, medicine, finance,

business and management. Each technology handles the uncertainty and

ambiguity of human knowledge differently, and each technology has found its

place in knowledge engineering. They no longer compete; rather they comple-

ment each other. A synergy of expert systems with fuzzy logic and neural

computing improves adaptability, robustness, fault-tolerance and speed of

knowledge-based systems. Besides, computing with words makes them more

‘human’. It is now common practice to build intelligent systems using existing

theories rather than to propose new ones, and to apply these systems to real-

world problems rather than to ‘toy’ problems.

1.3 Summary

We live in the era of the knowledge revolution, when the power of a nation is

determined not by the number of soldiers in its army but the knowledge it

possesses. Science, medicine, engineering and business propel nations towards a

higher quality of life, but they also require highly qualified and skilful people.

We are now adopting intelligent machines that can capture the expertise of such

knowledgeable people and reason in a manner similar to humans.

The desire for intelligent machines was just an elusive dream until the first

computer was developed. The early computers could manipulate large data bases

effectively by following prescribed algorithms, but could not reason about the

information provided. This gave rise to the question of whether computers could

ever think. Alan Turing defined the intelligent behaviour of a computer as the

ability to achieve human-level performance in a cognitive task. The Turing test

provided a basis for the verification and validation of knowledge-based systems.
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In 1956, a summer workshop at Dartmouth College brought together ten

researchers interested in the study of machine intelligence, and a new science –

artificial intelligence – was born.

Since the early 1950s, AI technology has developed from the curiosity of a

few researchers to a valuable tool to support humans making decisions. We

have seen historical cycles of AI from the era of great ideas and great

expectations in the 1960s to the disillusionment and funding cutbacks in

the early 1970s; from the development of the first expert systems such as

DENDRAL, MYCIN and PROSPECTOR in the 1970s to the maturity of expert

system technology and its massive applications in different areas in the 1980s/

90s; from a simple binary model of neurons proposed in the 1940s to a

dramatic resurgence of the field of artificial neural networks in the 1980s; from

the introduction of fuzzy set theory and its being ignored by the West in the

1960s to numerous ‘fuzzy’ consumer products offered by the Japanese in

the 1980s and world-wide acceptance of ‘soft’ computing and computing with

words in the 1990s.

The development of expert systems created knowledge engineering, the

process of building intelligent systems. Today it deals not only with expert

systems but also with neural networks and fuzzy logic. Knowledge engineering

is still an art rather than engineering, but attempts have already been made

to extract rules automatically from numerical data through neural network

technology.

Table 1.1 summarises the key events in the history of AI and knowledge

engineering from the first work on AI by McCulloch and Pitts in 1943, to the

recent trends of combining the strengths of expert systems, fuzzy logic and

neural computing in modern knowledge-based systems capable of computing

with words.

The most important lessons learned in this chapter are:

. Intelligence is the ability to learn and understand, to solve problems and to

make decisions.

. Artificial intelligence is a science that has defined its goal as making machines

do things that would require intelligence if done by humans.

. A machine is thought intelligent if it can achieve human-level performance in

some cognitive task. To build an intelligent machine, we have to capture,

organise and use human expert knowledge in some problem area.

. The realisation that the problem domain for intelligent machines had to be

sufficiently restricted marked a major ‘paradigm shift’ in AI from general-

purpose, knowledge-sparse, weak methods to domain-specific, knowledge-

intensive methods. This led to the development of expert systems – computer

programs capable of performing at a human-expert level in a narrow problem

area. Expert systems use human knowledge and expertise in the form of

specific rules, and are distinguished by the clean separation of the knowledge

and the reasoning mechanism. They can also explain their reasoning

procedures.
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Table 1.1 A summary of the main events in the history of AI and knowledge engineering

Period Key events

The birth of artificial

intelligence

(1943–56)

McCulloch and Pitts, A Logical Calculus of the Ideas

Immanent in Nervous Activity, 1943

Turing, Computing Machinery and Intelligence, 1950

The Electronic Numerical Integrator and Calculator project

(von Neumann)

Shannon, Programming a Computer for Playing Chess,

1950

The Dartmouth College summer workshop on machine

intelligence, artificial neural nets and automata theory,

1956

The rise of artificial

intelligence

(1956–late 1960s)

LISP (McCarthy)

The General Problem Solver (GPR) project (Newell and

Simon)

Newell and Simon, Human Problem Solving, 1972

Minsky, A Framework for Representing Knowledge, 1975

The disillusionment in

artificial intelligence

(late 1960s–early

1970s)

Cook, The Complexity of Theorem Proving Procedures,

1971

Karp, Reducibility Among Combinatorial Problems, 1972

The Lighthill Report, 1971

The discovery of

expert systems (early

1970s–mid-1980s)

DENDRAL (Feigenbaum, Buchanan and Lederberg, Stanford

University)

MYCIN (Feigenbaum and Shortliffe, Stanford University)

PROSPECTOR (Stanford Research Institute)

PROLOG – a Logic Programming Language (Colmerauer,

Roussel and Kowalski, France)

EMYCIN (Stanford University)

Waterman, A Guide to Expert Systems, 1986

The rebirth of artificial

neural networks

(1965–onwards)

Hopfield, Neural Networks and Physical Systems with

Emergent Collective Computational Abilities, 1982

Kohonen, Self-Organized Formation of Topologically Correct

Feature Maps, 1982

Rumelhart and McClelland, Parallel Distributed Processing,

1986

The First IEEE International Conference on Neural

Networks, 1987

Haykin, Neural Networks, 1994

Neural Network, MATLAB Application Toolbox (The

MathWork, Inc.)

19SUMMARY



. One of the main difficulties in building intelligent machines, or in other

words in knowledge engineering, is the ‘knowledge acquisition bottleneck’ –

extracting knowledge from human experts.

. Experts think in imprecise terms, such as very often and almost never,

usually and hardly ever, frequently and occasionally, and use linguistic

variables, such as high and low, fast and slow, heavy and light. Fuzzy logic

Table 1.1 (cont.)

Period Key events

Evolutionary

computation (early

1970s–onwards)

Rechenberg, Evolutionsstrategien – Optimierung

Technischer Systeme Nach Prinzipien der Biologischen

Information, 1973

Holland, Adaptation in Natural and Artificial Systems,

1975

Koza, Genetic Programming: On the Programming of the

Computers by Means of Natural Selection, 1992

Schwefel, Evolution and Optimum Seeking, 1995

Fogel, Evolutionary Computation – Towards a New

Philosophy of Machine Intelligence, 1995

Computing with words

(late 1980s–onwards)

Zadeh, Fuzzy Sets, 1965

Zadeh, Fuzzy Algorithms, 1969

Mamdani, Application of Fuzzy Logic to Approximate

Reasoning Using Linguistic Synthesis, 1977

Sugeno, Fuzzy Theory, 1983

Japanese ‘fuzzy’ consumer products (dishwashers,

washing machines, air conditioners, television sets,

copiers)

Sendai Subway System (Hitachi, Japan), 1986

Negoita, Expert Systems and Fuzzy Systems, 1985

The First IEEE International Conference on Fuzzy Systems,

1992

Kosko, Neural Networks and Fuzzy Systems, 1992

Kosko, Fuzzy Thinking, 1993

Yager and Zadeh, Fuzzy Sets, Neural Networks and Soft

Computing, 1994

Cox, The Fuzzy Systems Handbook, 1994

Kosko, Fuzzy Engineering, 1996

Zadeh, Computing with Words – A Paradigm Shift, 1996

Fuzzy Logic, MATLAB Application Toolbox (The MathWork,

Inc.)
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or fuzzy set theory provides a means to compute with words. It concentrates

on the use of fuzzy values that capture the meaning of words, human

reasoning and decision making, and provides a way of breaking through the

computational burden of traditional expert systems.

. Expert systems can neither learn nor improve themselves through experience.

They are individually created and demand large efforts for their development.

It can take from five to ten person-years to build even a moderate expert

system. Machine learning can accelerate this process significantly and

enhance the quality of knowledge by adding new rules or changing incorrect

ones.

. Artificial neural networks, inspired by biological neural networks, learn from

historical cases and make it possible to generate rules automatically and thus

avoid the tedious and expensive processes of knowledge acquisition, valida-

tion and revision.

. Integration of expert systems and ANNs, and fuzzy logic and ANNs improve

the adaptability, fault tolerance and speed of knowledge-based systems.

Questions for review

1 Define intelligence. What is the intelligent behaviour of a machine?

2 Describe the Turing test for artificial intelligence and justify its validity from a modern

standpoint.

3 Define artificial intelligence as a science. When was artificial intelligence born?

4 What are weak methods? Identify the main difficulties that led to the disillusion with AI

in the early 1970s.

5 Define expert systems. What is the main difference between weak methods and the

expert system technology?

6 List the common characteristics of early expert systems such as DENDRAL, MYCIN

and PROSPECTOR.

7 What are the limitations of expert systems?

8 What are the differences between expert systems and artificial neural networks?

9 Why was the field of ANN reborn in the 1980s?

10 What are the premises on which fuzzy logic is based? When was fuzzy set theory

introduced?

11 What are the main advantages of applying fuzzy logic in knowledge-based systems?

12 What are the benefits of integrating expert systems, fuzzy logic and neural

computing?
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2Rule-based expert systems

In which we introduce the most popular choice for building

knowledge-based systems: rule-based expert systems.

2.1 Introduction, or what is knowledge?

In the 1970s, it was finally accepted that to make a machine solve an intellectual

problem one had to know the solution. In other words, one has to have

knowledge, ‘know-how’, in some specific domain.

What is knowledge?

Knowledge is a theoretical or practical understanding of a subject or a domain.

Knowledge is also the sum of what is currently known, and apparently knowl-

edge is power. Those who possess knowledge are called experts. They are the

most powerful and important people in their organisations. Any successful

company has at least a few first-class experts and it cannot remain in business

without them.

Who is generally acknowledged as an expert?

Anyone can be considered a domain expert if he or she has deep knowledge (of

both facts and rules) and strong practical experience in a particular domain. The

area of the domain may be limited. For example, experts in electrical machines

may have only general knowledge about transformers, while experts in life

insurance marketing might have limited understanding of a real estate insurance

policy. In general, an expert is a skilful person who can do things other people

cannot.

How do experts think?

The human mental process is internal, and it is too complex to be represented as

an algorithm. However, most experts are capable of expressing their knowledge

in the form of rules for problem solving. Consider a simple example. Imagine,

you meet an alien! He wants to cross a road. Can you help him? You are an

expert in crossing roads – you’ve been on this job for several years. Thus you are

able to teach the alien. How would you do this?



You explain to the alien that he can cross the road safely when the traffic light

is green, and he must stop when the traffic light is red. These are the basic rules.

Your knowledge can be formulated as the following simple statements:

IF the ‘traffic light’ is green

THEN the action is go

IF the ‘traffic light’ is red

THEN the action is stop

These statements represented in the IF-THEN form are called production

rules or just rules. The term ‘rule’ in AI, which is the most commonly used type

of knowledge representation, can be defined as an IF-THEN structure that relates

given information or facts in the IF part to some action in the THEN part. A rule

provides some description of how to solve a problem. Rules are relatively easy to

create and understand.

2.2 Rules as a knowledge representation technique

Any rule consists of two parts: the IF part, called the antecedent (premise or

condition) and the THEN part called the consequent (conclusion or action).

The basic syntax of a rule is:

IF <antecedent>

THEN <consequent>

In general, a rule can have multiple antecedents joined by the keywords AND

(conjunction), OR (disjunction) or a combination of both. However, it is a good

habit to avoid mixing conjunctions and disjunctions in the same rule.

IF <antecedent 1>

AND <antecedent 2>

.

.

.

AND <antecedent n>

THEN <consequent>

IF <antecedent 1>

OR <antecedent 2>

.

.

.

OR <antecedent n>

THEN <consequent>
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The consequent of a rule can also have multiple clauses:

IF <antecedent>

THEN <consequent 1>

<consequent 2>

.

.

.

<consequent m>

The antecedent of a rule incorporates two parts: an object (linguistic object)

and its value. In our road crossing example, the linguistic object ‘traffic light’

can take either the value green or the value red. The object and its value are linked

by an operator. The operator identifies the object and assigns the value.

Operators such as is, are, is not, are not are used to assign a symbolic value to a

linguistic object. But expert systems can also use mathematical operators to

define an object as numerical and assign it to the numerical value. For example,

IF ‘age of the customer’ < 18

AND ‘cash withdrawal’ > 1000

THEN ‘signature of the parent’ is required

Similar to a rule antecedent, a consequent combines an object and a value

connected by an operator. The operator assigns the value to the linguistic object.

In the road crossing example, if the value of traffic light is green, the first rule sets

the linguistic object action to the value go. Numerical objects and even simple

arithmetical expression can also be used in a rule consequent.

IF ‘taxable income’ > 16283

THEN ‘Medicare levy’ ¼ ‘taxable income’ � 1.5 / 100

Rules can represent relations, recommendations, directives, strategies and

heuristics (Durkin, 1994).

Relation

IF the ‘fuel tank’ is empty

THEN the car is dead

Recommendation

IF the season is autumn

AND the sky is cloudy

AND the forecast is drizzle

THEN the advice is ‘take an umbrella’

Directive

IF the car is dead

AND the ‘fuel tank’ is empty

THEN the action is ‘refuel the car’
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Strategy

IF the car is dead

THEN the action is ‘check the fuel tank’;

step1 is complete

IF step1 is complete

AND the ‘fuel tank’ is full

THEN the action is ‘check the battery’;

step2 is complete

Heuristic

IF the spill is liquid

AND the ‘spill pH’ < 6

AND the ‘spill smell’ is vinegar

THEN the ‘spill material’ is ‘acetic acid’

2.3 The main players in the expert system development team

As soon as knowledge is provided by a human expert, we can input it into a

computer. We expect the computer to act as an intelligent assistant in some

specific domain of expertise or to solve a problem that would otherwise have to

be solved by an expert. We also would like the computer to be able to integrate

new knowledge and to show its knowledge in a form that is easy to read and

understand, and to deal with simple sentences in a natural language rather than

an artificial programming language. Finally, we want our computer to explain

how it reaches a particular conclusion. In other words, we have to build an

expert system, a computer program capable of performing at the level of a

human expert in a narrow problem area.

The most popular expert systems are rule-based systems. A great number have

been built and successfully applied in such areas as business and engineering,

medicine and geology, power systems and mining. A large number of companies

produce and market software for rule-based expert system development – expert

system shells for personal computers.

Expert system shells are becoming particularly popular for developing rule-

based systems. Their main advantage is that the system builder can now

concentrate on the knowledge itself rather than on learning a programming

language.

What is an expert system shell?

An expert system shell can be considered as an expert system with the

knowledge removed. Therefore, all the user has to do is to add the knowledge

in the form of rules and provide relevant data to solve a problem.

Let us now look at who is needed to develop an expert system and what skills

are needed.

In general, there are five members of the expert system development

team: the domain expert, the knowledge engineer, the programmer, the project
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manager and the end-user. The success of their expert system entirely depends

on how well the members work together. The basic relations in the development

team are summarised in Figure 2.1.

The domain expert is a knowledgeable and skilled person capable of solving

problems in a specific area or domain. This person has the greatest expertise in a

given domain. This expertise is to be captured in the expert system. Therefore,

the expert must be able to communicate his or her knowledge, be willing to

participate in the expert system development and commit a substantial amount

of time to the project. The domain expert is the most important player in the

expert system development team.

The knowledge engineer is someone who is capable of designing, building

and testing an expert system. This person is responsible for selecting an

appropriate task for the expert system. He or she interviews the domain expert

to find out how a particular problem is solved. Through interaction with the

expert, the knowledge engineer establishes what reasoning methods the expert

uses to handle facts and rules and decides how to represent them in the expert

system. The knowledge engineer then chooses some development software or an

expert system shell, or looks at programming languages for encoding the

knowledge (and sometimes encodes it himself). And finally, the knowledge

engineer is responsible for testing, revising and integrating the expert system

into the workplace. Thus, the knowledge engineer is committed to the project

from the initial design stage to the final delivery of the expert system, and even

after the project is completed, he or she may also be involved in maintaining the

system.

The programmer is the person responsible for the actual programming,

describing the domain knowledge in terms that a computer can understand.

The programmer needs to have skills in symbolic programming in such AI

Figure 2.1 The main players of the expert system development team
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languages as LISP, Prolog and OPS5 and also some experience in the application

of different types of expert system shells. In addition, the programmer should

know conventional programming languages like C, Pascal, FORTRAN and Basic.

If an expert system shell is used, the knowledge engineer can easily encode the

knowledge into the expert system and thus eliminate the need for the program-

mer. However, if a shell cannot be used, a programmer must develop the

knowledge and data representation structures (knowledge base and database),

control structure (inference engine) and dialogue structure (user interface). The

programmer may also be involved in testing the expert system.

The project manager is the leader of the expert system development team,

responsible for keeping the project on track. He or she makes sure that all

deliverables and milestones are met, interacts with the expert, knowledge

engineer, programmer and end-user.

The end-user, often called just the user, is a person who uses the expert

system when it is developed. The user might be an analytical chemist determin-

ing the molecular structure of soil from Mars (Feigenbaum et al., 1971), a junior

doctor diagnosing an infectious blood disease (Shortliffe, 1976), an exploration

geologist trying to discover a new mineral deposit (Duda et al., 1979), or a power

system operator needing advice in an emergency (Negnevitsky, 1996). Each of

these users of expert systems has different needs, which the system must meet:

the system’s final acceptance will depend on the user’s satisfaction. The user

must not only be confident in the expert system performance but also feel

comfortable using it. Therefore, the design of the user interface of the expert

system is also vital for the project’s success; the end-user’s contribution here can

be crucial.

The development of an expert system can be started when all five players have

joined the team. However, many expert systems are now developed on personal

computers using expert system shells. This can eliminate the need for the

programmer and also might reduce the role of the knowledge engineer. For

small expert systems, the project manager, knowledge engineer, programmer

and even the expert could be the same person. But all team players are required

when large expert systems are developed.

2.4 Structure of a rule-based expert system

In the early 1970s, Newell and Simon from Carnegie-Mellon University proposed

a production system model, the foundation of the modern rule-based expert

systems (Newell and Simon, 1972). The production model is based on the idea

that humans solve problems by applying their knowledge (expressed as produc-

tion rules) to a given problem represented by problem-specific information. The

production rules are stored in the long-term memory and the problem-specific

information or facts in the short-term memory. The production system model

and the basic structure of a rule-based expert system are shown in Figure 2.2.

A rule-based expert system has five components: the knowledge base, the

database, the inference engine, the explanation facilities, and the user interface.
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The knowledge base contains the domain knowledge useful for problem

solving. In a rule-based expert system, the knowledge is represented as a set

of rules. Each rule specifies a relation, recommendation, directive, strategy or

heuristic and has the IF (condition) THEN (action) structure. When the condition

part of a rule is satisfied, the rule is said to fire and the action part is executed.

The database includes a set of facts used to match against the IF (condition)

parts of rules stored in the knowledge base.

The inference engine carries out the reasoning whereby the expert system

reaches a solution. It links the rules given in the knowledge base with the facts

provided in the database.

Figure 2.2 Production system and basic structure of a rule-based expert system:

(a) production system model; (b) basic structure of a rule-based expert system
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The explanation facilities enable the user to ask the expert system how a

particular conclusion is reached and why a specific fact is needed. An expert

system must be able to explain its reasoning and justify its advice, analysis or

conclusion.

The user interface is the means of communication between a user seeking a

solution to the problem and an expert system. The communication should be as

meaningful and friendly as possible.

These five components are essential for any rule-based expert system. They

constitute its core, but there may be a few additional components.

The external interface allows an expert system to work with external data

files and programs written in conventional programming languages such as C,

Pascal, FORTRAN and Basic. The complete structure of a rule-based expert system

is shown in Figure 2.3.

The developer interface usually includes knowledge base editors, debugging

aids and input/output facilities.

All expert system shells provide a simple text editor to input and modify

rules, and to check their correct format and spelling. Many expert systems also

Figure 2.3 Complete structure of a rule-based expert system
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include book-keeping facilities to monitor the changes made by the knowledge

engineer or expert. If a rule is changed, the editor will automatically store the

change date and the name of the person who made this change for later

reference. This is very important when a number of knowledge engineers and

experts have access to the knowledge base and can modify it.

Debugging aids usually consist of tracing facilities and break packages.

Tracing provides a list of all rules fired during the program’s execution, and a

break package makes it possible to tell the expert system in advance where to

stop so that the knowledge engineer or the expert can examine the current

values in the database.

Most expert systems also accommodate input/output facilities such as run-

time knowledge acquisition. This enables the running expert system to ask for

needed information whenever this information is not available in the database.

When the requested information is input by the knowledge engineer or the

expert, the program resumes.

In general, the developer interface, and knowledge acquisition facilities in

particular, are designed to enable a domain expert to input his or her knowledge

directly in the expert system and thus to minimise the intervention of a

knowledge engineer.

2.5 Fundamental characteristics of an expert system

An expert system is built to perform at a human expert level in a narrow,

specialised domain. Thus, the most important characteristic of an expert

system is its high-quality performance. No matter how fast the system can solve

a problem, the user will not be satisfied if the result is wrong. On the other hand,

the speed of reaching a solution is very important. Even the most accurate

decision or diagnosis may not be useful if it is too late to apply, for instance, in

an emergency, when a patient dies or a nuclear power plant explodes. Experts

use their practical experience and understanding of the problem to find short

cuts to a solution. Experts use rules of thumb or heuristics. Like their human

counterparts, expert systems should apply heuristics to guide the reasoning and

thus reduce the search area for a solution.

A unique feature of an expert system is its explanation capability. This

enables the expert system to review its own reasoning and explain its decisions.

An explanation in expert systems in effect traces the rules fired during a

problem-solving session. This is, of course, a simplification; however a real or

‘human’ explanation is not yet possible because it requires basic understanding

of the domain. Although a sequence of rules fired cannot be used to justify a

conclusion, we can attach appropriate fundamental principles of the domain

expressed as text to each rule, or at least each high-level rule, stored in the

knowledge base. This is probably as far as the explanation capability can be

taken. However, the ability to explain a line of reasoning may not be essential for

some expert systems. For example, a scientific system built for experts may not

be required to provide extensive explanations, because the conclusion it reaches
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can be self-explanatory to other experts; a simple rule-tracing might be quite

appropriate. On the other hand, expert systems used in decision making usually

demand complete and thoughtful explanations, as the cost of a wrong decision

may be very high.

Expert systems employ symbolic reasoning when solving a problem.

Symbols are used to represent different types of knowledge such as facts,

concepts and rules. Unlike conventional programs written for numerical data

processing, expert systems are built for knowledge processing and can easily deal

with qualitative data.

Conventional programs process data using algorithms, or in other words, a

series of well-defined step-by-step operations. An algorithm always performs the

same operations in the same order, and it always provides an exact solution.

Conventional programs do not make mistakes – but programmers sometimes do.

Unlike conventional programs, expert systems do not follow a prescribed

sequence of steps. They permit inexact reasoning and can deal with incomplete,

uncertain and fuzzy data.

Can expert systems make mistakes?

Even a brilliant expert is only a human and thus can make mistakes. This

suggests that an expert system built to perform at a human expert level also

should be allowed to make mistakes. But we still trust experts, although we do

recognise that their judgements are sometimes wrong. Likewise, at least in most

cases, we can rely on solutions provided by expert systems, but mistakes are

possible and we should be aware of this.

Does it mean that conventional programs have an advantage over expert

systems?

In theory, conventional programs always provide the same ‘correct’ solutions.

However, we must remember that conventional programs can tackle problems if,

and only if, the data is complete and exact. When the data is incomplete or

includes some errors, a conventional program will provide either no solution at

all or an incorrect one. In contrast, expert systems recognise that the available

information may be incomplete or fuzzy, but they can work in such situations

and still arrive at some reasonable conclusion.

Another important feature that distinguishes expert systems from conven-

tional programs is that knowledge is separated from its processing (the

knowledge base and the inference engine are split up). A conventional program

is a mixture of knowledge and the control structure to process this knowledge.

This mixing leads to difficulties in understanding and reviewing the program

code, as any change to the code affects both the knowledge and its processing. In

expert systems, knowledge is clearly separated from the processing mechanism.

This makes expert systems much easier to build and maintain. When an expert

system shell is used, a knowledge engineer or an expert simply enters rules in the

knowledge base. Each new rule adds some new knowledge and makes the expert

system smarter. The system can then be easily modified by changing or

subtracting rules.
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The characteristics of expert systems discussed above make them different

from conventional systems and human experts. A comparison is shown in

Table 2.1.

2.6 Forward chaining and backward chaining inference
techniques

In a rule-based expert system, the domain knowledge is represented by a set of

IF-THEN production rules and data is represented by a set of facts about

the current situation. The inference engine compares each rule stored in the

Table 2.1 Comparison of expert systems with conventional systems and human experts

Human experts Expert systems Conventional programs

Use knowledge in the

form of rules of thumb or

heuristics to solve

problems in a narrow

domain.

Process knowledge

expressed in the form of

rules and use symbolic

reasoning to solve

problems in a narrow

domain.

Process data and use

algorithms, a series of

well-defined operations, to

solve general numerical

problems.

In a human brain,

knowledge exists in a

compiled form.

Provide a clear separation

of knowledge from its

processing.

Do not separate

knowledge from the

control structure to

process this knowledge.

Capable of explaining a

line of reasoning and

providing the details.

Trace the rules fired during

a problem-solving session

and explain how a

particular conclusion was

reached and why specific

data was needed.

Do not explain how a

particular result was

obtained and why input

data was needed.

Use inexact reasoning

and can deal with

incomplete, uncertain and

fuzzy information.

Permit inexact reasoning

and can deal with

incomplete, uncertain and

fuzzy data.

Work only on problems

where data is complete

and exact.

Can make mistakes when

information is incomplete

or fuzzy.

Can make mistakes when

data is incomplete or fuzzy.

Provide no solution at all,

or a wrong one, when data

is incomplete or fuzzy.

Enhance the quality of

problem solving via years

of learning and practical

training. This process is

slow, inefficient and

expensive.

Enhance the quality of

problem solving by adding

new rules or adjusting old

ones in the knowledge

base. When new knowledge

is acquired, changes are

easy to accomplish.

Enhance the quality of

problem solving by

changing the program

code, which affects both

the knowledge and its

processing, making

changes difficult.
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knowledge base with facts contained in the database. When the IF (condition)

part of the rule matches a fact, the rule is fired and its THEN (action) part is

executed. The fired rule may change the set of facts by adding a new fact, as

shown in Figure 2.4. Letters in the database and the knowledge base are used to

represent situations or concepts.

The matching of the rule IF parts to the facts produces inference chains.

The inference chain indicates how an expert system applies the rules to reach

a conclusion. To illustrate chaining inference techniques, consider a simple

example.

Suppose the database initially includes facts A, B, C, D and E, and the

knowledge base contains only three rules:

Rule 1: IF Y is true

AND D is true

THEN Z is true

Rule 2: IF X is true

AND B is true

AND E is true

THEN Y is true

Rule 3: IF A is true

THEN X is true

The inference chain shown in Figure 2.5 indicates how the expert system

applies the rules to infer fact Z. First Rule 3 is fired to deduce new fact X from

given fact A. Then Rule 2 is executed to infer fact Y from initially known facts B

and E, and already known fact X. And finally, Rule 1 applies initially known fact

D and just-obtained fact Y to arrive at conclusion Z.

An expert system can display its inference chain to explain how a particular

conclusion was reached; this is an essential part of its explanation facilities.

Figure 2.4 The inference engine cycles via a match-fire procedure
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The inference engine must decide when the rules have to be fired. There are

two principal ways in which rules are executed. One is called forward chaining

and the other backward chaining (Waterman and Hayes-Roth, 1978).

2.6.1 Forward chaining

The example discussed above uses forward chaining. Now consider this tech-

nique in more detail. Let us first rewrite our rules in the following form:

Rule 1: Y & D ! Z

Rule 2: X & B & E ! Y

Rule 3: A ! X

Arrows here indicate the IF and THEN parts of the rules. Let us also add two more

rules:

Rule 4: C ! L

Rule 5: L & M ! N

Figure 2.6 shows how forward chaining works for this simple set of rules.

Forward chaining is the data-driven reasoning. The reasoning starts from the

known data and proceeds forward with that data. Each time only the topmost

rule is executed. When fired, the rule adds a new fact in the database. Any rule

can be executed only once. The match-fire cycle stops when no further rules can

be fired.

In the first cycle, only two rules, Rule 3: A ! X and Rule 4: C ! L, match facts

in the database. Rule 3: A ! X is fired first as the topmost one. The IF part of this

rule matches fact A in the database, its THEN part is executed and new fact X is

added to the database. Then Rule 4: C ! L is fired and fact L is also placed in the

database.

In the second cycle, Rule 2: X&B&E ! Y is fired because facts B, E and X are

already in the database, and as a consequence fact Y is inferred and put in the

database. This in turn causes Rule 1: Y &D ! Z to execute, placing fact Z in

the database (cycle 3). Now the match-fire cycles stop because the IF part of

Rule 5: L&M ! N does not match all facts in the database and thus Rule 5

cannot be fired.

Figure 2.5 An example of an inference chain
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Forward chaining is a technique for gathering information and then inferring

from it whatever can be inferred. However, in forward chaining, many rules may

be executed that have nothing to do with the established goal. Suppose, in our

example, the goal was to determine fact Z. We had only five rules in the

knowledge base and four of them were fired. But Rule 4: C ! L, which is

unrelated to fact Z, was also fired among others. A real rule-based expert system

can have hundreds of rules, many of which might be fired to derive new facts

that are valid, but unfortunately unrelated to the goal. Therefore, if our goal is to

infer only one particular fact, the forward chaining inference technique would

not be efficient.

In such a situation, backward chaining is more appropriate.

2.6.2 Backward chaining

Backward chaining is the goal-driven reasoning. In backward chaining, an

expert system has the goal (a hypothetical solution) and the inference engine

attempts to find the evidence to prove it. First, the knowledge base is searched to

find rules that might have the desired solution. Such rules must have the goal in

their THEN (action) parts. If such a rule is found and its IF (condition) part

matches data in the database, then the rule is fired and the goal is proved.

However, this is rarely the case. Thus the inference engine puts aside the rule it is

working with (the rule is said to stack) and sets up a new goal, a sub-goal, to

prove the IF part of this rule. Then the knowledge base is searched again for rules

that can prove the sub-goal. The inference engine repeats the process of stacking

the rules until no rules are found in the knowledge base to prove the current

sub-goal.

Figure 2.6 Forward chaining
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Figure 2.7 shows how backward chaining works, using the rules for the

forward chaining example.

In Pass 1, the inference engine attempts to infer fact Z. It searches the

knowledge base to find the rule that has the goal, in our case fact Z, in its THEN

part. The inference engine finds and stacks Rule 1: Y &D ! Z. The IF part of

Rule 1 includes facts Y and D, and thus these facts must be established.

In Pass 2, the inference engine sets up the sub-goal, fact Y, and tries to

determine it. First it checks the database, but fact Y is not there. Then the

knowledge base is searched again for the rule with fact Y in its THEN part. The

Figure 2.7 Backward chaining
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inference engine locates and stacks Rule 2: X&B& E ! Y. The IF part of Rule 2

consists of facts X, B and E, and these facts also have to be established.

In Pass 3, the inference engine sets up a new sub-goal, fact X. It checks the

database for fact X, and when that fails, searches for the rule that infers X.

The inference engine finds and stacks Rule 3: A ! X. Now it must determine

fact A.

In Pass 4, the inference engine finds fact A in the database, Rule 3: A ! X is

fired and new fact X is inferred.

In Pass 5, the inference engine returns to the sub-goal fact Y and once again

tries to execute Rule 2: X&B&E ! Y. Facts X, B and E are in the database and

thus Rule 2 is fired and a new fact, fact Y, is added to the database.

In Pass 6, the system returns to Rule 1: Y &D ! Z trying to establish the

original goal, fact Z. The IF part of Rule 1 matches all facts in the database, Rule 1

is executed and thus the original goal is finally established.

Let us now compare Figure 2.6 with Figure 2.7. As you can see, four rules were

fired when forward chaining was used, but just three rules when we applied

backward chaining. This simple example shows that the backward chaining

inference technique is more effective when we need to infer one particular fact,

in our case fact Z. In forward chaining, the data is known at the beginning of the

inference process, and the user is never asked to input additional facts. In

backward chaining, the goal is set up and the only data used is the data needed

to support the direct line of reasoning, and the user may be asked to input any

fact that is not in the database.

How do we choose between forward and backward chaining?

The answer is to study how a domain expert solves a problem. If an expert first

needs to gather some information and then tries to infer from it whatever can be

inferred, choose the forward chaining inference engine. However, if your expert

begins with a hypothetical solution and then attempts to find facts to prove it,

choose the backward chaining inference engine.

Forward chaining is a natural way to design expert systems for analysis and

interpretation. For example, DENDRAL, an expert system for determining the

molecular structure of unknown soil based on its mass spectral data (Feigenbaum

et al., 1971), uses forward chaining. Most backward chaining expert systems

are used for diagnostic purposes. For instance, MYCIN, a medical expert system

for diagnosing infectious blood diseases (Shortliffe, 1976), uses backward

chaining.

Can we combine forward and backward chaining?

Many expert system shells use a combination of forward and backward chaining

inference techniques, so the knowledge engineer does not have to choose

between them. However, the basic inference mechanism is usually backward

chaining. Only when a new fact is established is forward chaining employed to

maximise the use of the new data.
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2.7 MEDIA ADVISOR: a demonstration rule-based expert
system

To illustrate some of the ideas discussed above, we next consider a simple rule-

based expert system. The Leonardo expert system shell was selected as a tool to

build a decision-support system called MEDIA ADVISOR. The system provides

advice on selecting a medium for delivering a training program based on the

trainee’s job. For example, if a trainee is a mechanical technician responsible for

maintaining hydraulic systems, an appropriate medium might be a workshop,

where the trainee could learn how basic hydraulic components operate, how to

troubleshoot hydraulics problems and how to make simple repairs to hydraulic

systems. On the other hand, if a trainee is a clerk assessing insurance applica-

tions, a training program might include lectures on specific problems of the task,

as well as tutorials where the trainee could evaluate real applications. For

complex tasks, where trainees are likely to make mistakes, a training program

should also include feedback on the trainee’s performance.

Knowledge base

/* MEDIA ADVISOR: a demonstration rule-based expert system

Rule: 1

if the environment is papers

or the environment is manuals

or the environment is documents

or the environment is textbooks

then the stimulus_situation is verbal

Rule: 2

if the environment is pictures

or the environment is illustrations

or the environment is photographs

or the environment is diagrams

then the stimulus_situation is visual

Rule: 3

if the environment is machines

or the environment is buildings

or the environment is tools

then the stimulus_situation is ‘physical object’

Rule: 4

if the environment is numbers

or the environment is formulas

or the environment is ‘computer programs’

then the stimulus_situation is symbolic
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Rule: 5

if the job is lecturing

or the job is advising

or the job is counselling

then the stimulus_response is oral

Rule: 6

if the job is building

or the job is repairing

or the job is troubleshooting

then the stimulus_response is ‘hands-on’

Rule: 7

if the job is writing

or the job is typing

or the job is drawing

then the stimulus_response is documented

Rule: 8

if the job is evaluating

or the job is reasoning

or the job is investigating

then the stimulus_response is analytical

Rule: 9

if the stimulus_situation is ‘physical object’

and the stimulus_response is ‘hands-on’

and feedback is required

then medium is workshop

Rule: 10

if the stimulus_situation is symbolic

and the stimulus_response is analytical

and feedback is required

then medium is ‘lecture – tutorial’

Rule: 11

if the stimulus_situation is visual

and the stimulus_response is documented

and feedback is not required

then medium is videocassette

Rule: 12

if the stimulus_situation is visual

and the stimulus_response is oral

and feedback is required

then medium is ‘lecture – tutorial’
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Rule: 13

if the stimulus_situation is verbal

and the stimulus_response is analytical

and feedback is required

then medium is ‘lecture – tutorial’

Rule: 14

if the stimulus_situation is verbal

and the stimulus_response is oral

and feedback is required

then medium is ‘role-play exercises’

/* The SEEK directive sets up the goal of the rule set

seek medium

Objects

MEDIA ADVISOR uses six linguistic objects: environment, stimulus_situation, job,

stimulus_response, feedback and medium. Each object can take one of the allowed

values (for example, object environment can take the value of papers, manuals,

documents, textbooks, pictures, illustrations, photographs, diagrams, machines, build-

ings, tools, numbers, formulas, computer programs). An object and its value

constitute a fact (for instance, the environment is machines, and the job is

repairing). All facts are placed in the database.

Object Allowed values Object Allowed values

environment papers job lecturing

manuals advising

documents counselling

textbooks building

pictures repairing

illustrations troubleshooting

photographs writing

diagrams typing

machines drawing

buildings evaluating

tools reasoning

numbers

formulas

investigating

computer programs stimulus_ response oral

hands-on

documented

analytical

stimulus_situation verbal

visual

physical object feedback required

symbolic not required
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Options

The final goal of the rule-based expert system is to produce a solution to the

problem based on input data. In MEDIA ADVISOR, the solution is a medium

selected from the list of four options:

medium is workshop

medium is ‘lecture – tutorial’

medium is videocassette

medium is ‘role-play exercises’

Dialogue

In the dialogue shown below, the expert system asks the user to input the data

needed to solve the problem (the environment, the job and feedback). Based on

the answers supplied by the user (answers are indicated by arrows), the expert

system applies rules from its knowledge base to infer that the stimulus_situation is

physical object, and the stimulus_response is hands-on. Rule 9 then selects one of

the allowed values of medium.

What sort of environment is a trainee dealing with on the job?

) machines

Rule: 3

if the environment is machines

or the environment is buildings

or the environment is tools

then the stimulus_situation is ‘physical object’

In what way is a trainee expected to act or respond on the job?

) repairing

Rule: 6

if the job is building

or the job is repairing

or the job is troubleshooting

then the stimulus_response is ‘hands-on’

Is feedback on the trainee’s progress required during training?

) required

Rule: 9

if the stimulus_situation is ‘physical object’

and the stimulus_response is ‘hands-on’

and feedback is required

then medium is workshop

medium is workshop
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Inference techniques

The standard inference technique in Leonardo is backward chaining with

opportunistic forward chaining, which is the most efficient way to deal with

the available information. However, Leonardo also enables the user to turn off

either backward or forward chaining, and thus allows us to study each inference

technique separately.

Forward chaining is data-driven reasoning, so we need first to provide some

data. Assume that

the environment is machines

‘environment’ instantiated by user input to ‘machines’

the job is repairing

‘job’ instantiated by user input to ‘repairing’

feedback is required

‘feedback’ instantiated by user input to ‘required’

The following process will then happen:

Rule: 3 fires ‘stimulus_situation’ instantiated by Rule: 3 to ‘physical object’

Rule: 6 fires ‘stimulus_response’ instantiated by Rule: 6 to ‘hands-on’

Rule: 9 fires ‘medium’ instantiated by Rule: 9 to ‘workshop’

No rules fire stop

Backward chaining is goal-driven reasoning, so we need first to establish a

hypothetical solution (the goal). Let us, for example, set up the following goal:

‘medium’ is ‘workshop’

Pass 1

Trying Rule: 9 Need to find object ‘stimulus_situation’

Rule: 9 stacked Object ‘stimulus_situation’ sought as ‘physical

object’

Pass 2

Trying Rule: 3 Need to find object ‘environment’

Rule: 3 stacked Object ‘environment’ sought as ‘machines’

ask environment

)machines ‘environment’ instantiated by user input to

‘machines’

Trying Rule: 3 ‘stimulus_situation’ instantiated by Rule: 3 to

‘physical object’

Pass 3

Trying Rule: 9 Need to find object ‘stimulus_response’

Rule: 9 stacked Object ‘stimulus_response’ sought as ‘hands-on’
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Pass 4

Trying Rule: 6 Need to find object ‘job’

Rule: 6 stacked Object ‘job’ sought as ‘building’

ask job

) repairing ‘job’ instantiated by user input to ‘repairing’

Trying Rule: 6 ‘stimulus_response’ instantiated by Rule: 6 to

‘hands-on’

Pass 5

Trying Rule: 9 Need to find object ‘feedback’

Rule: 9 stacked Object ‘feedback’ sought as ‘required’

ask feedback

) required ‘feedback’ instantiated by user input to ‘required’

Trying Rule: 9 ‘medium’ instantiated by Rule: 9 to ‘workshop’

medium is workshop

It is useful to have a tree diagram that maps a consultation session with an

expert system. A diagram for MEDIA ADVISOR is shown in Figure 2.8. The root

node is the goal; when the system is started, the inference engine seeks to

determine the goal’s value.

Goal: medium

stimulus 
situation 

?

Rule: 10Rule: 9 Rule: 11 Rule: 12 Rule: 13 Rule: 14

Rule: 2Rule: 1 Rule: 3 Rule: 4 Rule: 5 Rule: 6 Rule: 7 Rule: 8

stimulus 
response 

?

environment 
?

Ask: 
environment

job 
?

Ask: 
job

feedback 
?

Ask: 
feedback

Figure 2.8 Tree diagram for the rule-based expert system MEDIA ADVISOR
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Does MEDIA ADVISOR handle all possible situations?

When we start to use our expert system more often, we might find that the

provided options do not cover all possible situations. For instance, the following

dialogue might occur:

What sort of environment is a trainee dealing with on the job?

)illustrations

In what way is a trainee expected to act or respond on the job?

)drawing

Is feedback on the trainee’s progress required during training?

)required

I am unable to draw any conclusions on the basis of the data.

Thus, MEDIA ADVISOR in its present state cannot handle this particular

situation. Fortunately, the expert system can easily be expanded to accommo-

date more rules until it finally does what the user wants it to do.

2.8 Conflict resolution

Earlier in this chapter, we considered two simple rules for crossing a road. Let us

now add a third rule. We will get the following set of rules:

Rule 1:

IF the ‘traffic light’ is green

THEN the action is go

Rule 2:

IF the ‘traffic light’ is red

THEN the action is stop

Rule 3:

IF the ‘traffic light’ is red

THEN the action is go

What will happen?

The inference engine compares IF (condition) parts of the rules with data

available in the database, and when conditions are satisfied the rules are set to

fire. The firing of one rule may affect the activation of other rules, and therefore

the inference engine must allow only one rule to fire at a time. In our road

crossing example, we have two rules, Rule 2 and Rule 3, with the same IF part.

Thus both of them can be set to fire when the condition part is satisfied. These

rules represent a conflict set. The inference engine must determine which rule to

fire from such a set. A method for choosing a rule to fire when more than one

rule can be fired in a given cycle is called conflict resolution.
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If the traffic light is red, which rule should be executed?

In forward chaining, both rules would be fired. Rule 2 is fired first as the top-

most one, and as a result, its THEN part is executed and linguistic object action

obtains value stop. However, Rule 3 is also fired because the condition part of

this rule matches the fact ‘traffic light’ is red, which is still in the database.

As a consequence, object action takes new value go. This simple example shows

that the rule order is vital when the forward chaining inference technique is used.

How can we resolve a conflict?

The obvious strategy for resolving conflicts is to establish a goal and stop the rule

execution when the goal is reached. In our problem, for example, the goal is to

establish a value for linguistic object action. When the expert system determines

a value for action, it has reached the goal and stops. Thus if the traffic light is

red, Rule 2 is executed, object action attains value stop and the expert system

stops. In the given example, the expert system makes a right decision; however if

we arranged the rules in the reverse order, the conclusion would be wrong. It

means that the rule order in the knowledge base is still very important.

Are there any other conflict resolution methods?

Several methods are in use (Giarratano and Riley, 1998; Shirai and Tsuji, 1982):

. Fire the rule with the highest priority. In simple applications, the priority can

be established by placing the rules in an appropriate order in the knowledge

base. Usually this strategy works well for expert systems with around 100

rules. However, in some applications, the data should be processed in order of

importance. For example, in a medical consultation system (Durkin, 1994),

the following priorities are introduced:

Goal 1. Prescription is? Prescription

RULE 1 Meningitis Prescription1

(Priority 100)

IF Infection is Meningitis

AND The Patient is a Child

THEN Prescription is Number_1

AND Drug Recommendation is Ampicillin

AND Drug Recommendation is Gentamicin

AND Display Meningitis Prescription1

RULE 2 Meningitis Prescription2

(Priority 90)

IF Infection is Meningitis

AND The Patient is an Adult

THEN Prescription is Number_2

AND Drug Recommendation is Penicillin

AND Display Meningitis Prescription2
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. Fire the most specific rule. This method is also known as the longest

matching strategy. It is based on the assumption that a specific rule processes

more information than a general one. For example,

Rule 1:

IF the season is autumn

AND the sky is cloudy

AND the forecast is rain

THEN the advice is ‘stay home’

Rule 2:

IF the season is autumn

THEN the advice is ‘take an umbrella’

If the season is autumn, the sky is cloudy and the forecast is rain, then Rule 1

would be fired because its antecedent, the matching part, is more specific than

that of Rule 2. But if it is known only that the season is autumn, then Rule 2

would be executed.

. Fire the rule that uses the data most recently entered in the database. This

method relies on time tags attached to each fact in the database. In the conflict

set, the expert system first fires the rule whose antecedent uses the data most

recently added to the database. For example,

Rule 1:

IF the forecast is rain [08:16 PM 11/25/96]

THEN the advice is ‘take an umbrella’

Rule 2:

IF the weather is wet [10:18 AM 11/26/96]

THEN the advice is ‘stay home’

Assume that the IF parts of both rules match facts in the database. In this

case, Rule 2 would be fired since the fact weather is wet was entered after the

fact forecast is rain. This technique is especially useful for real-time expert

system applications when information in the database is constantly updated.

The conflict resolution methods considered above are simple and easily

implemented. In most cases, these methods provide satisfactory solutions.

However, as a program grows larger and more complex, it becomes increasingly

difficult for the knowledge engineer to manage and oversee rules in the

knowledge base. The expert system itself must take at least some of the burden

and understand its own behaviour.

To improve the performance of an expert system, we should supply the

system with some knowledge about the knowledge it possesses, or in other

words, metaknowledge.

Metaknowledge can be simply defined as knowledge about knowledge.

Metaknowledge is knowledge about the use and control of domain knowledge

in an expert system (Waterman, 1986). In rule-based expert systems, meta-

knowledge is represented by metarules. A metarule determines a strategy for the

use of task-specific rules in the expert system.
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What is the origin of metaknowledge?

The knowledge engineer transfers the knowledge of the domain expert to the

expert system, learns how problem-specific rules are used, and gradually creates

in his or her own mind a new body of knowledge, knowledge about the overall

behaviour of the expert system. This new knowledge, or metaknowledge, is

largely domain-independent. For example,

Metarule 1:

Rules supplied by experts have higher priorities than rules supplied by

novices.

Metarule 2:

Rules governing the rescue of human lives have higher priorities than rules

concerned with clearing overloads on power system equipment.

Can an expert system understand and use metarules?

Some expert systems provide a separate inference engine for metarules. However,

most expert systems cannot distinguish between rules and metarules. Thus

metarules should be given the highest priority in the existing knowledge base.

When fired, a metarule ‘injects’ some important information into the database

that can change the priorities of some other rules.

2.9 Advantages and disadvantages of rule-based expert
systems

Rule-based expert systems are generally accepted as the best option for building

knowledge-based systems.

Which features make rule-based expert systems particularly attractive for

knowledge engineers?

Among these features are:

. Natural knowledge representation. An expert usually explains the problem-

solving procedure with such expressions as this: ‘In such-and-such situation,

I do so-and-so’. These expressions can be represented quite naturally as

IF-THEN production rules.

. Uniform structure. Production rules have the uniform IF-THEN structure.

Each rule is an independent piece of knowledge. The very syntax of produc-

tion rules enables them to be self-documented.

. Separation of knowledge from its processing. The structure of a rule-based

expert system provides an effective separation of the knowledge base from the

inference engine. This makes it possible to develop different applications

using the same expert system shell. It also allows a graceful and easy

expansion of the expert system. To make the system smarter, a knowledge

engineer simply adds some rules to the knowledge base without intervening

in the control structure.
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. Dealing with incomplete and uncertain knowledge. Most rule-based expert

systems are capable of representing and reasoning with incomplete and

uncertain knowledge. For example, the rule

IF season is autumn

AND sky is ‘cloudy’

AND wind is low

THEN forecast is clear { cf 0.1 };

forecast is drizzle { cf 1.0 };

forecast is rain { cf 0.9 }

could be used to express the uncertainty of the following statement, ‘If the

season is autumn and it looks like drizzle, then it will probably be another wet

day today’.

The rule represents the uncertainty by numbers called certainty factors

fcf 0.1g. The expert system uses certainty factors to establish the degree of

confidence or level of belief that the rule’s conclusion is true. This topic will

be considered in detail in Chapter 3.

All these features of the rule-based expert systems make them highly desirable

for knowledge representation in real-world problems.

Are rule-based expert systems problem-free?

There are three main shortcomings:

. Opaque relations between rules. Although the individual production rules

tend to be relatively simple and self-documented, their logical interactions

within the large set of rules may be opaque. Rule-based systems make it

difficult to observe how individual rules serve the overall strategy. This

problem is related to the lack of hierarchical knowledge representation in

the rule-based expert systems.

. Ineffective search strategy. The inference engine applies an exhaustive

search through all the production rules during each cycle. Expert systems

with a large set of rules (over 100 rules) can be slow, and thus large rule-based

systems can be unsuitable for real-time applications.

. Inability to learn. In general, rule-based expert systems do not have an

ability to learn from the experience. Unlike a human expert, who knows

when to ‘break the rules’, an expert system cannot automatically modify its

knowledge base, or adjust existing rules or add new ones. The knowledge

engineer is still responsible for revising and maintaining the system.

2.10 Summary

In this chapter, we presented an overview of rule-based expert systems. We

briefly discussed what knowledge is, and how experts express their knowledge in

the form of production rules. We identified the main players in the expert
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system development team and showed the structure of a rule-based system. We

discussed fundamental characteristics of expert systems and noted that expert

systems can make mistakes. Then we reviewed the forward and backward

chaining inference techniques and debated conflict resolution strategies. Finally,

the advantages and disadvantages of rule-based expert systems were examined.

The most important lessons learned in this chapter are:

. Knowledge is a theoretical or practical understanding of a subject. Knowledge

is the sum of what is currently known.

. An expert is a person who has deep knowledge in the form of facts and rules

and strong practical experience in a particular domain. An expert can do

things other people cannot.

. The experts can usually express their knowledge in the form of production

rules.

. Production rules are represented as IF (antecedent) THEN (consequent)

statements. A production rule is the most popular type of knowledge

representation. Rules can express relations, recommendations, directives,

strategies and heuristics.

. A computer program capable of performing at a human-expert level in a

narrow problem domain area is called an expert system. The most popular

expert systems are rule-based expert systems.

. In developing rule-based expert systems, shells are becoming particularly

common. An expert system shell is a skeleton expert system with the

knowledge removed. To build a new expert system application, all the user

has to do is to add the knowledge in the form of rules and provide relevant

data. Expert system shells offer a dramatic reduction in the development time

of expert systems.

. The expert system development team should include the domain expert, the

knowledge engineer, the programmer, the project manager and the end-user.

The knowledge engineer designs, builds and tests an expert system. He or she

captures the knowledge from the domain expert, establishes reasoning

methods and chooses the development software. For small expert systems

based on expert system shells, the project manager, knowledge engineer,

programmer and even the expert could be the same person.

. A rule-based expert system has five basic components: the knowledge base,

the database, the inference engine, the explanation facilities and the user

interface. The knowledge base contains the domain knowledge represented as

a set of rules. The database includes a set of facts used to match against the IF

parts of rules. The inference engine links the rules with the facts and carries

out the reasoning whereby the expert system reaches a solution. The

explanation facilities enable the user to query the expert system about how

a particular conclusion is reached and why a specific fact is needed. The user

interface is the means of communication between a user and an expert

system.
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. Expert systems separate knowledge from its processing by splitting up the

knowledge base and the inference engine. This makes the task of building and

maintaining an expert system much easier. When an expert system shell is

used, a knowledge engineer or an expert simply enter rules in the knowledge

base. Each new rule adds some new knowledge and makes the expert system

smarter.

. Expert systems provide a limited explanation capability by tracing the rules

fired during a problem-solving session.

. Unlike conventional programs, expert systems can deal with incomplete and

uncertain data and permit inexact reasoning. However, like their human

counterparts, expert systems can make mistakes when information is incom-

plete or fuzzy.

. There are two principal methods to direct search and reasoning: forward

chaining and backward chaining inference techniques. Forward chaining is

data-driven reasoning; it starts from the known data and proceeds forward

until no further rules can be fired. Backward chaining is goal-driven reason-

ing; an expert system has a hypothetical solution (the goal), and the inference

engine attempts to find the evidence to prove it.

. If more than one rule can be fired in a given cycle, the inference engine

must decide which rule to fire. A method for deciding is called conflict

resolution.

. Rule-based expert systems have the advantages of natural knowledge repres-

entation, uniform structure, separation of knowledge from its processing, and

coping with incomplete and uncertain knowledge.

. Rule-based expert systems also have disadvantages, especially opaque rela-

tions between rules, ineffective search strategy, and inability to learn.

Questions for review

1 What is knowledge? Explain why experts usually have detailed knowledge of a limited

area of a specific domain. What do we mean by heuristic?

2 What is a production rule? Give an example and define two basic parts of the

production rule.

3 List and describe the five major players in the expert system development team. What

is the role of the knowledge engineer?

4 What is an expert system shell? Explain why the use of an expert system shell can

dramatically reduce the development time of an expert system.

5 What is a production system model? List and define the five basic components of an

expert system.

6 What are the fundamental characteristics of an expert system? What are the

differences between expert systems and conventional programs?
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7 Can an expert system make mistakes? Why?

8 Describe the forward chaining inference process. Give an example.

9 Describe the backward chaining inference process. Give an example.

10 List problems for which the forward chaining inference technique is appropriate. Why is

backward chaining used for diagnostic problems?

11 What is a conflict set of rules? How can we resolve a conflict? List and describe the

basic conflict resolution methods.

12 List advantages of rule-based expert systems. What are their disadvantages?
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3Uncertainty management in
rule-based expert systems

In which we present the main uncertainty management paradigms,

Bayesian reasoning and certainty factors, discuss their relative

merits and consider examples to illustrate the theory.

3.1 Introduction, or what is uncertainty?

One of the common characteristics of the information available to human

experts is its imperfection. Information can be incomplete, inconsistent, un-

certain, or all three. In other words, information is often unsuitable for solving a

problem. However, an expert can cope with these defects and can usually make

correct judgements and right decisions. Expert systems also have to be able to

handle uncertainty and draw valid conclusions.

What is uncertainty in expert systems?

Uncertainty can be defined as the lack of the exact knowledge that would enable

us to reach a perfectly reliable conclusion (Stephanou and Sage, 1987). Classical

logic permits only exact reasoning. It assumes that perfect knowledge always

exists and the law of the excluded middle can always be applied:

IF A is true

THEN A is not false

and

IF B is false

THEN B is not true

Unfortunately most real-world problems where expert systems could be used

do not provide us with such clear-cut knowledge. The available information

often contains inexact, incomplete or even unmeasurable data.

What are the sources of uncertain knowledge in expert systems?

In general, we can identify four main sources: weak implications, imprecise

language, unknown data, and the difficulty of combining the views of different



experts (Bonissone and Tong, 1985). Let us consider these sources in more

detail.

. Weak implications. Rule-based expert systems often suffer from weak

implications and vague associations. Domain experts and knowledge engi-

neers have the painful, and rather hopeless, task of establishing concrete

correlations between IF (condition) and THEN (action) parts of the rules.

Therefore, expert systems need to have the ability to handle vague associa-

tions, for example by accepting the degree of correlations as numerical

certainty factors.

. Imprecise language. Our natural language is inherently ambiguous and

imprecise. We describe facts with such terms as often and sometimes,

frequently and hardly ever. As a result, it can be difficult to express

knowledge in the precise IF-THEN form of production rules. However, if the

meaning of the facts is quantified, it can be used in expert systems. In 1944,

Ray Simpson asked 355 high school and college students to place 20 terms

like often on a scale between 1 and 100 (Simpson, 1944). In 1968, Milton

Hakel repeated this experiment (Hakel, 1968). Their results are presented in

Table 3.1.

Quantifying the meaning of the terms enables an expert system to

establish an appropriate matching of the IF (condition) part of the rules with

facts available in the database.

. Unknown data. When the data is incomplete or missing, the only solution is

to accept the value ‘unknown’ and proceed to an approximate reasoning with

this value.

. Combining the views of different experts. Large expert systems usually

combine the knowledge and expertise of a number of experts. For example,

nine experts participated in the development of PROSPECTOR, an expert

system for mineral exploration (Duda et al., 1979). Unfortunately, experts

seldom reach exactly the same conclusions. Usually, experts have contra-

dictory opinions and produce conflicting rules. To resolve the conflict, the

knowledge engineer has to attach a weight to each expert and then calculate

the composite conclusion. However, even a domain expert generally does not

have the same uniform level of expertise throughout a domain. In addition,

no systematic method exists to obtain weights.

In summary, an expert system should be able to manage uncertainties because

any real-world domain contains inexact knowledge and needs to cope with

incomplete, inconsistent or even missing data. A number of numeric and non-

numeric methods have been developed to deal with uncertainty in rule-based

expert systems (Bhatnagar and Kanal, 1986). In this chapter, we consider the

most popular uncertainty management paradigms: Bayesian reasoning and

certainty factors. However, we first look at the basic principles of classical

probability theory.
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3.2 Basic probability theory

The basic concept of probability plays a significant role in our everyday life. We

try to determine the probability of rain and the prospects of our promotion,

the odds that the Australian cricket team will win the next test match, and the

likelihood of winning a million dollars in Tattslotto.

The concept of probability has a long history that goes back thousands of

years when words like ‘probably’, ‘likely’, ‘maybe’, ‘perhaps’ and ‘possibly’ were

introduced into spoken languages (Good, 1959). However, the mathematical

theory of probability was formulated only in the 17th century.

How can we define probability?

The probability of an event is the proportion of cases in which the event occurs

(Good, 1959). Probability can also be defined as a scientific measure of chance.

Detailed analysis of modern probability theory can be found in such well-known

textbooks as Feller (1957) and Fine (1973). In this chapter, we examine only the

basic ideas used in representing uncertainties in expert systems.

Probability can be expressed mathematically as a numerical index with a

range between zero (an absolute impossibility) to unity (an absolute certainty).

Most events have a probability index strictly between 0 and 1, which means that

Table 3.1 Quantification of ambiguous and imprecise terms on a time-frequency scale

Ray Simpson (1944) Milton Hakel (1968)

Term Mean value Term Mean value

Always 99 Always 100

Very often 88 Very often 87

Usually 85 Usually 79

Often 78 Often 74

Generally 78 Rather often 74

Frequently 73 Frequently 72

Rather often 65 Generally 72

About as often as not 50 About as often as not 50

Now and then 20 Now and then 34

Sometimes 20 Sometimes 29

Occasionally 20 Occasionally 28

Once in a while 15 Once in a while 22

Not often 13 Not often 16

Usually not 10 Usually not 16

Seldom 10 Seldom 9

Hardly ever 7 Hardly ever 8

Very seldom 6 Very seldom 7

Rarely 5 Rarely 5

Almost never 3 Almost never 2

Never 0 Never 0
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each event has at least two possible outcomes: favourable outcome or success,

and unfavourable outcome or failure.

The probability of success and failure can be determined as follows:

PðsuccessÞ ¼ the number of successes

the number of possible outcomes
ð3:1Þ

PðfailureÞ ¼ the number of failures

the number of possible outcomes
ð3:2Þ

Therefore, if s is the number of times success can occur, and f is the number of

times failure can occur, then

PðsuccessÞ ¼ p ¼ s

s þ f
ð3:3Þ

PðfailureÞ ¼ q ¼ f

s þ f
ð3:4Þ

and

p þ q ¼ 1 ð3:5Þ

Let us consider classical examples with a coin and a die. If we throw a coin,

the probability of getting a head will be equal to the probability of getting a tail.

In a single throw, s ¼ f ¼ 1, and therefore the probability of getting a head (or a

tail) is 0.5.

Consider now a dice and determine the probability of getting a 6 from a single

throw. If we assume a 6 as the only success, then s ¼ 1 and f ¼ 5, since there is

just one way of getting a 6, and there are five ways of not getting a 6 in a single

throw. Therefore, the probability of getting a 6 is

p ¼ 1

1 þ 5
¼ 0:1666

and the probability of not getting a 6 is

q ¼ 5

1 þ 5
¼ 0:8333

So far, we have been concerned with events that are independent and

mutually exclusive (i.e. events that cannot happen simultaneously). In the dice

experiment, the two events of obtaining a 6 and, for example, a 1 are mutually

exclusive because we cannot obtain a 6 and a 1 simultaneously in a single throw.

However, events that are not independent may affect the likelihood of one or

the other occurring. Consider, for instance, the probability of getting a 6 in a
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single throw, knowing this time that a 1 has not come up. There are still five

ways of not getting a 6, but one of them can be eliminated as we know that a 1

has not been obtained. Thus,

p ¼ 1

1 þ ð5 � 1Þ

Let A be an event in the world and B be another event. Suppose that events A

and B are not mutually exclusive, but occur conditionally on the occurrence of

the other. The probability that event A will occur if event B occurs is called the

conditional probability. Conditional probability is denoted mathematically as

pðAjBÞ in which the vertical bar represents GIVEN and the complete probability

expression is interpreted as ‘Conditional probability of event A occurring given

that event B has occurred’.

pðAjBÞ ¼ the number of times A and B can occur

the number of times B can occur
ð3:6Þ

The number of times A and B can occur, or the probability that both A and B

will occur, is called the joint probability of A and B. It is represented

mathematically as pðA \ BÞ. The number of ways B can occur is the probability

of B, pðBÞ, and thus

pðAjBÞ ¼ pðA \ BÞ
pðBÞ ð3:7Þ

Similarly, the conditional probability of event B occurring given that event A

has occurred equals

pðBjAÞ ¼ pðB \ AÞ
pðAÞ ð3:8Þ

Hence,

pðB \ AÞ ¼ pðBjAÞ � pðAÞ ð3:9Þ

The joint probability is commutative, thus

pðA \ BÞ ¼ pðB \ AÞ

Therefore,

pðA \ BÞ ¼ pðBjAÞ � pðAÞ ð3:10Þ
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Substituting Eq. (3.10) into Eq. (3.7) yields the following equation:

pðAjBÞ ¼ pðBjAÞ � pðAÞ
pðBÞ ; ð3:11Þ

where:

pðAjBÞ is the conditional probability that event A occurs given that event
B has occurred;

pðBjAÞ is the conditional probability of event B occurring given that event A

has occurred;

pðAÞ is the probability of event A occurring;

pðBÞ is the probability of event B occurring.

Equation (3.11) is known as the Bayesian rule, which is named after Thomas

Bayes, an 18th-century British mathematician who introduced this rule.

The concept of conditional probability introduced so far considered that

event A was dependent upon event B. This principle can be extended to event A

being dependent on a number of mutually exclusive events B1;B2; . . . ;Bn. The

following set of equations can then be derived from Eq. (3.7):

pðA \ B1Þ ¼ pðAjB1Þ � pðB1Þ
pðA \ B2Þ ¼ pðAjB2Þ � pðB2Þ

..

.

pðA \ BnÞ ¼ pðAjBnÞ � pðBnÞ

or when combined:

Xn

i¼1

pðA \ BiÞ ¼
Xn

i¼1

pðAjBiÞ � pðBiÞ ð3:12Þ

If Eq. (3.12) is summed over an exhaustive list of events for Bi as illustrated in

Figure 3.1, we obtain

Xn

i¼1

pðA \ BiÞ ¼ pðAÞ ð3:13Þ

It reduces Eq. (3.12) to the following conditional probability equation:

pðAÞ ¼
Xn

i¼1

pðAjBiÞ � pðBiÞ ð3:14Þ
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If the occurrence of event A depends on only two mutually exclusive events,

i.e. B and NOT B, then Eq. (3.14) becomes

pðAÞ ¼ pðAjBÞ � pðBÞ þ pðAj:BÞ � pð:BÞ; ð3:15Þ

where : is the logical function NOT.

Similarly,

pðBÞ ¼ pðBjAÞ � pðAÞ þ pðBj:AÞ � pð:AÞ ð3:16Þ

Let us now substitute Eq. (3.16) into the Bayesian rule (3.11) to yield

pðAjBÞ ¼ pðBjAÞ � pðAÞ
pðBjAÞ � pðAÞ þ pðBj:AÞ � pð:AÞ ð3:17Þ

Equation (3.17) provides the background for the application of probability

theory to manage uncertainty in expert systems.

3.3 Bayesian reasoning

With Eq. (3.17) we can now leave basic probability theory and turn our attention

back to expert systems. Suppose all rules in the knowledge base are represented

in the following form:

IF E is true

THEN H is true {with probability p}

This rule implies that if event E occurs, then the probability that event H will

occur is p.

What if event E has occurred but we do not know whether event H has

occurred? Can we compute the probability that event H has occurred as

well?

Equation (3.17) tells us how to do this. We simply use H and E instead of A and B.

In expert systems, H usually represents a hypothesis and E denotes evidence to

Figure 3.1 The joint probability
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support this hypothesis. Thus, Eq. (3.17) expressed in terms of hypotheses and

evidence looks like this (Firebaugh, 1989):

pðHjEÞ ¼ pðEjHÞ � pðHÞ
pðEjHÞ � pðHÞ þ pðEj:HÞ � pð:HÞ ð3:18Þ

where:

pðHÞ is the prior probability of hypothesis H being true;

pðEjHÞ is the probability that hypothesis H being true will result in evidence E;

pð:HÞ is the prior probability of hypothesis H being false;

pðEj:HÞ is the probability of finding evidence E even when hypothesis H is

false.

Equation (3.18) suggests that the probability of hypothesis H, pðHÞ, has to be

defined before any evidence is examined. In expert systems, the probabilities

required to solve a problem are provided by experts. An expert determines the

prior probabilities for possible hypotheses pðHÞ and pð:HÞ, and also the con-

ditional probabilities for observing evidence E if hypothesis H is true, pðEjHÞ, and

if hypothesis H is false, pðEj:HÞ. Users provide information about the evidence

observed and the expert system computes pðHjEÞ for hypothesis H in light of the

user-supplied evidence E. Probability pðHjEÞ is called the posterior probability

of hypothesis H upon observing evidence E.

What if the expert, based on single evidence E, cannot choose a single

hypothesis but rather provides multiple hypotheses H1, H2, . . . , Hm? Or

given multiple evidences E1, E2, . . . , En, the expert also produces

multiple hypotheses?

We can generalise Eq. (3.18) to take into account both multiple hypotheses

H1;H2; . . . ;Hm and multiple evidences E1;E2; . . . ; En. But the hypotheses as well as

the evidences must be mutually exclusive and exhaustive.

Single evidence E and multiple hypotheses H1;H2; . . . ;Hm follow:

pðHijEÞ ¼
pðEjHiÞ � pðHiÞ

Xm
k¼1

pðEjHkÞ � pðHkÞ
ð3:19Þ

Multiple evidences E1; E2; . . . ;En and multiple hypotheses H1;H2; . . . ;Hm

follow:

pðHijE1E2 . . .EnÞ ¼
pðE1E2 . . .EnjHiÞ � pðHiÞ

Xm

k¼1

pðE1E2 . . .EnjHkÞ � pðHkÞ
ð3:20Þ

An application of Eq. (3.20) requires us to obtain the conditional probabilities

of all possible combinations of evidences for all hypotheses. This requirement
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places an enormous burden on the expert and makes his or her task practically

impossible. Therefore, in expert systems, subtleties of evidence should be

suppressed and conditional independence among different evidences assumed

(Ng and Abramson, 1990). Thus, instead of unworkable Eq. (3.20), we attain:

pðHijE1E2 . . .EnÞ ¼
pðE1jHiÞ � pðE2jHiÞ � . . .� pðEnjHiÞ � pðHiÞ

Xm

k¼1

pðE1jHkÞ � pðE2jHkÞ � . . .� pðEnjHkÞ � pðHkÞ
ð3:21Þ

How does an expert system compute all posterior probabilities and finally

rank potentially true hypotheses?

Let us consider a simple example. Suppose an expert, given three conditionally

independent evidences E1, E2 and E3, creates three mutually exclusive and

exhaustive hypotheses H1, H2 and H3, and provides prior probabilities for these

hypotheses – pðH1Þ, pðH2Þ and pðH3Þ, respectively. The expert also determines the

conditional probabilities of observing each evidence for all possible hypotheses.

Table 3.2 illustrates the prior and conditional probabilities provided by the expert.

Assume that we first observe evidence E3. The expert system computes the

posterior probabilities for all hypotheses according to Eq. (3.19):

pðHijE3Þ ¼
pðE3jHiÞ � pðHiÞ

X3

k¼1

pðE3jHkÞ � pðHkÞ
; i ¼ 1; 2;3

Thus,

pðH1jE3Þ ¼
0:6 � 0:40

0:6 � 0:40 þ 0:7 � 0:35 þ 0:9 � 0:25
¼ 0:34

pðH2jE3Þ ¼
0:7 � 0:35

0:6 � 0:40 þ 0:7 � 0:35 þ 0:9 � 0:25
¼ 0:34

pðH3jE3Þ ¼
0:9 � 0:25

0:6 � 0:40 þ 0:7 � 0:35 þ 0:9 � 0:25
¼ 0:32

Table 3.2 The prior and conditional probabilities

Hypothesis

Probability i ¼ 1 i ¼ 2 i ¼ 3

pðHiÞ 0.40 0.35 0.25

pðE1jHiÞ 0.3 0.8 0.5

pðE2jHiÞ 0.9 0.0 0.7

pðE3jHiÞ 0.6 0.7 0.9
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As you can see, after evidence E3 is observed, belief in hypothesis H1 decreases

and becomes equal to belief in hypothesis H2. Belief in hypothesis H3 increases

and even nearly reaches beliefs in hypotheses H1 and H2.

Suppose now that we observe evidence E1. The posterior probabilities are

calculated by Eq. (3.21):

pðHijE1E3Þ ¼
pðE1jHiÞ � pðE3jHiÞ � pðHiÞ

X3

k¼1

pðE1jHkÞ � pðE3jHkÞ � pðHkÞ
; i ¼ 1;2; 3

Hence,

pðH1jE1E3Þ ¼
0:3 � 0:6 � 0:40

0:3 � 0:6 � 0:40 þ 0:8 � 0:7 � 0:35 þ 0:5 � 0:9 � 0:25
¼ 0:19

pðH2jE1E3Þ ¼
0:8 � 0:7 � 0:35

0:3 � 0:6 � 0:40 þ 0:8 � 0:7 � 0:35 þ 0:5 � 0:9 � 0:25
¼ 0:52

pðH3jE1E3Þ ¼
0:5 � 0:9 � 0:25

0:3 � 0:6 � 0:40 þ 0:8 � 0:7 � 0:35 þ 0:5 � 0:9 � 0:25
¼ 0:29

Hypothesis H2 is now considered as the most likely one, while belief in

hypothesis H1 has decreased dramatically.

After observing evidence E2 as well, the expert system calculates the final

posterior probabilities for all hypotheses:

pðHijE1E2E3Þ ¼
pðE1jHiÞ � pðE2jHiÞ � pðE3jHiÞ � pðHiÞ

X3

k¼1

pðE1jHkÞ � pðE2jHkÞ � pðE3jHkÞ � pðHkÞ
; i ¼ 1;2;3

Thus,

pðH1jE1E2E3Þ¼
0:3�0:9�0:6�0:40

0:3�0:9�0:6�0:40þ0:8�0:0�0:7�0:35þ0:5�0:7�0:9�0:25

¼0:45

pðH2jE1E2E3Þ¼
0:8�0:0�0:7�0:35

0:3�0:9�0:6�0:40þ0:8�0:0�0:7�0:35þ0:5�0:7�0:9�0:25

¼0

pðH3jE1E2E3Þ¼
0:5�0:7�0:9�0:25

0:3�0:9�0:6�0:40þ0:8�0:0�0:7�0:35þ0:5�0:7�0:9�0:25

¼0:55

Although the initial ranking provided by the expert was H1, H2 and H3, only

hypotheses H1 and H3 remain under consideration after all evidences (E1, E2 and
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E3) were observed. Hypothesis H2 can now be completely abandoned. Note that

hypothesis H3 is considered more likely than hypothesis H1.

PROSPECTOR, an expert system for mineral exploration, was the first system

to use Bayesian rules of evidence to compute pðHjEÞ and propagate uncertainties

throughout the system (Duda et al., 1979). To help interpret Bayesian reasoning

in expert systems, consider a simple example.

3.4 FORECAST: Bayesian accumulation of evidence

Let us develop an expert system for a real problem such as the weather forecast.

Our expert system will be required to work out if it is going to rain tomorrow. It

will need some real data, which can be obtained from the weather bureau.

Table 3.3 summarises London weather for March 1982. It gives the minimum

and maximum temperatures, rainfall and sunshine for each day. If rainfall is zero

it is a dry day.

The expert system should give us two possible outcomes – tomorrow is rain and

tomorrow is dry – and provide their likelihood. In other words, the expert system

must determine the conditional probabilities of the two hypotheses tomorrow is

rain and tomorrow is dry.

To apply the Bayesian rule (3.18), we should provide the prior probabilities of

these hypotheses.

The first thing to do is to write two basic rules that, with the data provided,

could predict the weather for tomorrow.

Rule: 1

IF today is rain

THEN tomorrow is rain

Rule: 2

IF today is dry

THEN tomorrow is dry

Using these rules we will make only ten mistakes – every time a wet day

precedes a dry one, or a dry day precedes a wet one. Thus, we can accept the prior

probabilities of 0.5 for both hypotheses and rewrite our rules in the following

form:

Rule: 1

IF today is rain {LS 2.5 LN .6}

THEN tomorrow is rain {prior .5}

Rule: 2

IF today is dry {LS 1.6 LN .4}

THEN tomorrow is dry {prior .5}
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The value of LS represents a measure of the expert belief in hypothesis H if

evidence E is present. It is called likelihood of sufficiency. The likelihood of

sufficiency is defined as the ratio of pðEjHÞ over pðEj:HÞ

LS ¼ pðEjHÞ
pðEj:HÞ ð3:22Þ

In our case, LS is the probability of getting rain today if we have rain tomorrow,

divided by the probability of getting rain today if there is no rain tomorrow:

LS ¼ pðtoday is rain j tomorrow is rainÞ
pðtoday is rain j tomorrow is dryÞ

Table 3.3 London weather summary for March 1982

Day of

month

Min. temp.

8C
Max. temp.

8C
Rainfall

mm

Sunshine

hours

Actual

weather

Weather

forecast

1 9.4 11.0 17.5 3.2 Rain –

2 4.2 12.5 4.1 6.2 Rain Rain

3 7.6 11.2 7.7 1.1 Rain Rain

4 5.7 10.5 0.0 4.3 Dry Rain*
5 3.0 12.0 0.0 9.5 Dry Dry

6 4.4 9.6 0.0 3.5 Dry Dry

7 4.8 9.4 4.6 10.1 Rain Rain

8 1.8 9.2 5.5 7.8 Rain Rain

9 2.4 10.2 4.8 4.1 Rain Rain

10 5.5 12.7 4.2 3.8 Rain Rain

11 3.7 10.9 4.4 9.2 Rain Rain

12 5.9 10.0 4.8 7.1 Rain Rain

13 3.0 11.9 0.0 8.3 Dry Rain*
14 5.4 12.1 4.8 1.8 Rain Dry*
15 8.8 9.1 8.8 0.0 Rain Rain

16 2.4 8.4 3.0 3.1 Rain Rain

17 4.3 10.8 0.0 4.3 Dry Dry

18 3.4 11.1 4.2 6.6 Rain Rain

19 4.4 8.4 5.4 0.7 Rain Rain

20 5.1 7.9 3.0 0.1 Rain Rain

21 4.4 7.3 0.0 0.0 Dry Dry

22 5.6 14.0 0.0 6.8 Dry Dry

23 5.7 14.0 0.0 8.8 Dry Dry

24 2.9 13.9 0.0 9.5 Dry Dry

25 5.8 16.4 0.0 10.3 Dry Dry

26 3.9 17.0 0.0 9.9 Dry Dry

27 3.8 18.3 0.0 8.3 Dry Dry

28 5.8 15.4 3.2 7.0 Rain Dry*
29 6.7 8.8 0.0 4.2 Dry Dry

30 4.5 9.6 4.8 8.8 Rain Rain

31 4.6 9.6 3.2 4.2 Rain Rain

* errors in weather forecast
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LN, as you may already have guessed, is a measure of discredit to hypothesis H

if evidence E is missing. LN is called likelihood of necessity and defined as:

LN ¼ pð:EjHÞ
pð:Ej:HÞ ð3:23Þ

In our weather example, LN is the probability of not getting rain today if we

have rain tomorrow, divided by the probability of not getting rain today if there

is no rain tomorrow:

LN ¼ pðtoday is dry j tomorrow is rainÞ
pðtoday is dry j tomorrow is dryÞ

Note that LN cannot be derived from LS. The domain expert must provide

both values independently.

How does the domain expert determine values of the likelihood of

sufficiency and the likelihood of necessity? Is the expert required to deal

with conditional probabilities?

To provide values for LS and LN, an expert does not need to determine exact

values of conditional probabilities. The expert decides likelihood ratios directly.

High values of LS ðLS >> 1Þ indicate that the rule strongly supports the

hypothesis if the evidence is observed, and low values of LN ð0 < LN < 1Þ suggest

that the rule also strongly opposes the hypothesis if the evidence is missing.

Since the conditional probabilities can be easily computed from the likelihood

ratios LS and LN, this approach can use the Bayesian rule to propagate evidence.

Go back now to the London weather. Rule 1 tells us that if it is raining today,

there is a high probability of rain tomorrow ðLS ¼ 2:5Þ. But even if there is no

rain today, or in other words today is dry, there is still some chance of having

rain tomorrow ðLN ¼ 0:6Þ.
Rule 2, on the other hand, clarifies the situation with a dry day. If it is dry

today, then the probability of a dry day tomorrow is also high ðLS ¼ 1:6Þ.
However, as you can see, the probability of rain tomorrow if it is raining today

is higher than the probability of a dry day tomorrow if it is dry today. Why? The

values of LS and LN are usually determined by the domain expert. In our weather

example, these values can also be confirmed from the statistical information

published by the weather bureau. Rule 2 also determines the chance of a dry day

tomorrow even if today we have rain ðLN ¼ 0:4Þ.

How does the expert system get the overall probability of a dry or wet

day tomorrow?

In the rule-based expert system, the prior probability of the consequent, pðHÞ, is

converted into the prior odds:

OðHÞ ¼ pðHÞ
1 � pðHÞ ð3:24Þ
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The prior probability is only used when the uncertainty of the consequent is

adjusted for the first time. Then in order to obtain the posterior odds, the prior

odds are updated by LS if the antecedent of the rule (in other words evidence) is

true and by LN if the antecedent is false:

OðHjEÞ ¼ LS � OðHÞ ð3:25Þ

and

OðHj:EÞ ¼ LN � OðHÞ ð3:26Þ

The posterior odds are then used to recover the posterior probabilities:

pðHjEÞ ¼ OðHjEÞ
1 þ OðHjEÞ ð3:27Þ

and

pðHj:EÞ ¼ OðHj:EÞ
1 þ OðHj:EÞ ð3:28Þ

Our London weather example shows how this scheme works. Suppose the

user indicates that today is rain. Rule 1 is fired and the prior probability of

tomorrow is rain is converted into the prior odds:

Oðtomorrow is rainÞ ¼ 0:5

1 � 0:5
¼ 1:0

The evidence today is rain increases the odds by a factor of 2.5, thereby raising the

probability from 0.5 to 0.71:

Oðtomorrow is rain j today is rainÞ ¼ 2:5 � 1:0 ¼ 2:5

pðtomorrow is rain j today is rainÞ ¼ 2:5

1 þ 2:5
¼ 0:71

Rule 2 is also fired. The prior probability of tomorrow is dry is converted into

the prior odds, but the evidence today is rain reduces the odds by a factor of 0.4.

This, in turn, diminishes the probability of tomorrow is dry from 0.5 to 0.29:

Oðtomorrow is dryÞ ¼ 0:5

1 � 0:5
¼ 1:0

Oðtomorrow is dry j today is rainÞ ¼ 0:4 � 1:0 ¼ 0:4

pðtomorrow is dry j today is rainÞ ¼ 0:4

1 þ 0:4
¼ 0:29
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Hence if it is raining today there is a 71 per cent chance of it raining and a

29 per cent chance of it being dry tomorrow.

Further suppose that the user input is today is dry. By a similar calculation

there is a 62 per cent chance of it being dry and a 38 per cent chance of it raining

tomorrow.

Now we have examined the basic principles of Bayesian rules of evidence, we

can incorporate some new knowledge in our expert system. To do this, we need

to determine conditions when the weather actually did change. Analysis of the

data provided in Table 3.3 allows us to develop the following knowledge base

(the Leonardo expert system shell is used here).

Knowledge base

/* FORECAST: BAYESIAN ACCUMULATION OF EVIDENCE

control bayes

Rule: 1

if today is rain {LS 2.5 LN .6}

then tomorrow is rain {prior .5}

Rule: 2

if today is dry {LS 1.6 LN .4}

then tomorrow is dry {prior .5}

Rule: 3

if today is rain

and rainfall is low {LS 10 LN 1}

then tomorrow is dry {prior .5}

Rule: 4

if today is rain

and rainfall is low

and temperature is cold {LS 1.5 LN 1}

then tomorrow is dry {prior .5}

Rule: 5

if today is dry

and temperature is warm {LS 2 LN .9}

then tomorrow is rain {prior .5}

Rule: 6

if today is dry

and temperature is warm

and sky is overcast {LS 5 LN 1}

then tomorrow is rain {prior .5}

/* The SEEK directive sets up the goal of the rule set

seek tomorrow
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Dialogue

Based on the information provided by the user, the expert system determines

whether we can expect a dry day tomorrow. The user’s answers are indicated by

arrows. We assume that rainfall is low if it is less than 4.1 mm, the temperature is

cold if the average daily temperature is lower than or equal to 7.08C, and warm if

it is higher than 7.08C. Finally, sunshine less than 4.6 hours a day stands for

overcast.

What is the weather today?

) rain

Rule: 1

if today is rain {LS 2.5 LN .6}

then tomorrow is rain {prior .5}

Oðtomorrow is rainÞ ¼ 0:5

1 � 0:5
¼ 1:0

Oðtomorrow is rain j today is rainÞ ¼ 2:5 � 1:0 ¼ 2:5

pðtomorrow is rain j today is rainÞ ¼ 2:5

1 þ 2:5
¼ 0:71

tomorrow is rain {0.71}

Rule: 2

if today is dry {LS 1.6 LN .4}

then tomorrow is dry {prior .5}

Oðtomorrow is dryÞ ¼ 0:5

1 � 0:5
¼ 1:0

Oðtomorrow is dry j today is rainÞ ¼ 0:4 � 1:0 ¼ 0:4

pðtomorrow is dry j today is rainÞ ¼ 0:4

1 þ 0:4
¼ 0:29

tomorrow is rain {0.71}

dry {0.29}

What is the rainfall today?

) low

Rule: 3

if today is rain

and rainfall is low {LS 10 LN 1}

then tomorrow is dry {prior .5}

Oðtomorrow is dryÞ ¼ 0:29

1 � 0:29
¼ 0:41

Oðtomorrow is dry j today is rain \ rainfall is lowÞ ¼ 10 � 0:41 ¼ 4:1
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pðtomorrow is dry j today is rain \ rainfall is lowÞ ¼ 4:1

1 þ 4:1
¼ 0:80

tomorrow is dry {0.80}

rain {0.71}

What is the temperature today?

) cold

Rule: 4

if today is rain

and rainfall is low

and temperature is cold {LS 1.5 LN 1}

then tomorrow is dry {prior .5}

Oðtomorrow is dryÞ ¼ 0:80

1 � 0:80
¼ 4

Oðtomorrow is dry j today is rain \ rainfall is low \ temperature is coldÞ
¼ 1:50 � 4 ¼ 6

pðtomorrow is dry j today is rain \ rainfall is low \ temperature is coldÞ

¼ 6

1 þ 6
¼ 0:86

tomorrow is dry {0.86}

rain {0.71}

Rule: 5

if today is dry

and temperature is warm {LS 2 LN .9}

then tomorrow is rain {prior .5}

Oðtomorrow is rainÞ ¼ 0:71

1 � 0:71
¼ 2:45

Oðtomorrow is rain j today is not dry\ temperature is not warmÞ ¼ 0:9�2:45¼ 2:21

pðtomorrow is rain j today is not dry\ temperature is not warmÞ ¼ 2:21

1þ2:21
¼ 0:69

tomorrow is dry {0.86}

rain {0.69}

What is the cloud cover today?

) overcast

Rule: 6

if today is dry

and temperature is warm

and sky is overcast {LS 5 LN 1}

then tomorrow is rain {prior .5}
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Oðtomorrow is rainÞ ¼ 0:69

1 � 0:69
¼ 2:23

Oðtomorrow is rain j today is not dry \ temperature is not warm \ sky is overcastÞ
¼ 1:0 � 2:23 ¼ 2:23

pðtomorrow is rain j today is not dry \ temperature is not warm \ sky is overcastÞ

¼ 2:23

1 þ 2:23
¼ 0:69

tomorrow is dry {0.86}

rain {0.69}

This means that we have two potentially true hypotheses, tomorrow is dry and

tomorrow is rain, but the likelihood of the first one is higher.

From Table 3.3 you can see that our expert system made only four mistakes.

This is an 86 per cent success rate, which compares well with the results provided

in Naylor (1987) for the same case of the London weather.

3.5 Bias of the Bayesian method

The framework for Bayesian reasoning requires probability values as primary

inputs. The assessment of these values usually involves human judgement.

However, psychological research shows that humans either cannot elicit prob-

ability values consistent with the Bayesian rules or do it badly (Burns and Pearl,

1981; Tversky and Kahneman, 1982). This suggests that the conditional prob-

abilities may be inconsistent with the prior probabilities given by the expert.

Consider, for example, a car that does not start and makes odd noises when you

press the starter. The conditional probability of the starter being faulty if the car

makes odd noises may be expressed as:

IF the symptom is ‘odd noises’

THEN the starter is bad {with probability 0.7}

Apparently the conditional probability that the starter is not bad if the car

makes odd noises is:

pðstarter is not bad jodd noisesÞ ¼ pðstarter is good jodd noisesÞ ¼ 1�0:7 ¼ 0:3

Therefore, we can obtain a companion rule that states

IF the symptom is ‘odd noises’

THEN the starter is good {with probability 0.3}
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Domain experts do not deal easily with conditional probabilities and quite

often deny the very existence of the hidden implicit probability (0.3 in our

example).

In our case, we would use available statistical information and empirical

studies to derive the following two rules:

IF the starter is bad

THEN the symptom is ‘odd noises’ {with probability 0.85}

IF the starter is bad

THEN the symptom is not ‘odd noises’ {with probability 0.15}

To use the Bayesian rule, we still need the prior probability, the probability

that the starter is bad if the car does not start. Here we need an expert judgement.

Suppose, the expert supplies us the value of 5 per cent. Now we can apply the

Bayesian rule (3.18) to obtain

pðstarter is bad j odd noisesÞ ¼ 0:85 � 0:05

0:85 � 0:05 þ 0:15 � 0:95
¼ 0:23

The number obtained is significantly lower than the expert’s estimate of 0.7

given at the beginning of this section.

Why this inconsistency? Did the expert make a mistake?

The most obvious reason for the inconsistency is that the expert made different

assumptions when assessing the conditional and prior probabilities. We may

attempt to investigate it by working backwards from the posterior probability

pðstarter is bad jodd noisesÞ to the prior probability pðstarter is badÞ. In our case,

we can assume that

pðstarter is goodÞ ¼ 1 � pðstarter is badÞ

From Eq. (3.18) we obtain:

pðHÞ ¼ pðHjEÞ � pðEj:HÞ
pðHjEÞ � pðEj:HÞ þ pðEjHÞ½1 � pðHjEÞ�

where:

pðHÞ ¼ pðstarter is badÞ;

pðHjEÞ ¼ pðstarter is bad jodd noisesÞ;

pðEjHÞ ¼ pðodd noises j starter is badÞ;

pðEj:HÞ ¼ pðodd noises j starter is goodÞ.

If we now take the value of 0.7, pðstarter is badjodd noisesÞ, provided by the

expert as the correct one, the prior probability pðstarter is badÞ would have
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to be:

pðHÞ ¼ 0:7 � 0:15

0:7 � 0:15 þ 0:85 � ð1 � 0:7Þ ¼ 0:29

This value is almost six times larger than the figure of 5 per cent provided by

the expert. Thus the expert indeed uses quite different estimates of the prior and

conditional probabilities.

In fact, the prior probabilities also provided by the expert are likely to be

inconsistent with the likelihood of sufficiency, LS, and the likelihood of

necessity, LN. Several methods are proposed to handle this problem (Duda

et al., 1976). The most popular technique, first applied in PROSPECTOR, is the

use of a piecewise linear interpolation model (Duda et al., 1979).

However, to use the subjective Bayesian approach, we must satisfy many

assumptions, including the conditional independence of evidence under both a

hypothesis and its negation. As these assumptions are rarely satisfied in real

world problems, only a few systems have been built based on Bayesian reason-

ing. The best known one is PROSPECTOR, an expert system for mineral

exploration (Duda et al., 1979).

3.6 Certainty factors theory and evidential reasoning

Certainty factors theory is a popular alternative to Bayesian reasoning. The basic

principles of this theory were first introduced in MYCIN, an expert system for the

diagnosis and therapy of blood infections and meningitis (Shortliffe and

Buchanan, 1975). The developers of MYCIN found that medical experts

expressed the strength of their belief in terms that were neither logical nor

mathematically consistent. In addition, reliable statistical data about the

problem domain was not available. Therefore, the MYCIN team was unable to

use a classical probability approach. Instead they decided to introduce a

certainty factor (cf ), a number to measure the expert’s belief. The maximum

value of the certainty factor was þ1:0 (definitely true) and the minimum �1:0

(definitely false). A positive value represented a degree of belief and a negative

a degree of disbelief. For example, if the expert stated that some evidence

was almost certainly true, a cf value of 0.8 would be assigned to this evidence.

Table 3.4 shows some uncertain terms interpreted in MYCIN (Durkin, 1994).

In expert systems with certainty factors, the knowledge base consists of a set

of rules that have the following syntax:

IF <evidence>

THEN <hypothesis> {cf}

where cf represents belief in hypothesis H given that evidence E has occurred.

The certainty factors theory is based on two functions: measure of belief

MBðH;EÞ, and measure of disbelief MDðH;EÞ (Shortliffe and Buchanan, 1975).
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These functions indicate, respectively, the degree to which belief in hypothesis H

would be increased if evidence E were observed, and the degree to which

disbelief in hypothesis H would be increased by observing the same evidence E.

The measure of belief and disbelief can be defined in terms of prior and

conditional probabilities as follows (Ng and Abramson, 1990):

MBðH;EÞ ¼
1 if pðHÞ ¼ 1

max ½pðHjEÞ; pðHÞ� � pðHÞ
max ½1;0� � pðHÞ otherwise

8<
: ð3:29Þ

MDðH;EÞ ¼
1 if pðHÞ ¼ 0

min ½pðHjEÞ; pðHÞ� � pðHÞ
min ½1;0� � pðHÞ otherwise

8<
: ð3:30Þ

where:

pðHÞ is the prior probability of hypothesis H being true;

pðHjEÞ is the probability that hypothesis H is true given evidence E.

The values of MBðH; EÞ and MDðH;EÞ range between 0 and 1. The strength of

belief or disbelief in hypothesis H depends on the kind of evidence E observed.

Some facts may increase the strength of belief, but some increase the strength of

disbelief.

How can we determine the total strength of belief or disbelief in a

hypothesis?

To combine them into one number, the certainty factor, the following equation

is used:

cf ¼ MBðH;EÞ � MDðH;EÞ
1 � min ½MBðH;EÞ;MDðH;EÞ� ð3:31Þ

Table 3.4 Uncertain terms and their interpretation

Term Certainty factor

Definitely not �1:0

Almost certainly not �0:8

Probably not �0:6

Maybe not �0:4

Unknown �0:2 to þ0:2

Maybe þ0:4

Probably þ0:6

Almost certainly þ0:8

Definitely þ1:0

75CERTAINTY FACTORS THEORY AND EVIDENTIAL REASONING



Thus cf, which can range in MYCIN from �1 to þ1, indicates the total belief in

hypothesis H.

The MYCIN approach can be illustrated through an example. Consider a

simple rule:

IF A is X

THEN B is Y

Quite often, an expert may not be absolutely certain that this rule holds. Also

suppose it has been observed that in some cases, even when the IF part of the

rule is satisfied and object A takes on value X, object B can acquire some different

value Z. In other words, we have here the uncertainty of a quasi-statistical kind.

The expert usually can associate a certainty factor with each possible value B

given that A has value X. Thus our rule might look as follows:

IF A is X

THEN B is Y {cf 0.7};

B is Z {cf 0.2}

What does it mean? Where is the other 10 per cent?

It means that, given A has received value X, B will be Y 70 per cent and Z 20 per

cent of the time. The other 10 per cent of the time it could be anything. In such a

way the expert might reserve a possibility that object B can take not only two

known values, Y and Z, but also some other value that has not yet been observed.

Note that we assign multiple values to object B.

The certainty factor assigned by a rule is then propagated through the

reasoning chain. Propagation of the certainty factor involves establishing the

net certainty of the rule consequent when the evidence in the rule antecedent is

uncertain. The net certainty for a single antecedent rule, cf ðH;EÞ, can be easily

calculated by multiplying the certainty factor of the antecedent, cf ðEÞ, with

the rule certainty factor, cf

cf ðH;EÞ ¼ cf ðEÞ � cf ð3:32Þ

For example,

IF the sky is clear

THEN the forecast is sunny {cf 0.8}

and the current certainty factor of sky is clear is 0.5, then

cf ðH;EÞ ¼ 0:5 � 0:8 ¼ 0:4

This result, according to Table 3.4, would read as ‘It may be sunny’.
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How does an expert system establish the certainty factor for rules with

multiple antecedents?

For conjunctive rules such as

IF <evidence E1 >

AND <evidence E2 >

.

.

.

AND <evidence En >

THEN <hypothesis H > {cf}

the net certainty of the consequent, or in other words the certainty of hypothesis

H, is established as follows:

cf ðH;E1 \ E2 \ . . . \ EnÞ ¼ min ½cf ðE1Þ; cf ðE2Þ; . . . ; cf ðEnÞ� � cf ð3:33Þ

For example,

IF sky is clear

AND the forecast is sunny

THEN the action is ‘wear sunglasses’ {cf 0.8}

and the certainty of sky is clear is 0.9 and the certainty of the forecast is sunny

is 0.7, then

cf ðH;E1 \ E2Þ ¼ min ½0:9;0:7� � 0:8 ¼ 0:7 � 0:8 ¼ 0:56

According to Table 3.4, this conclusion might be interpreted as ‘Probably it

would be a good idea to wear sunglasses today’.

For disjunctive rules such as

IF <evidence E1 >

OR <evidence E2 >

.

.

.

OR <evidence En >

THEN <hypothesis H > {cf}

the certainty of hypothesis H, is determined as follows:

cf ðH;E1 [ E2 [ . . . [ EnÞ ¼ max ½cf ðE1Þ; cf ðE2Þ; . . . ; cf ðEnÞ� � cf ð3:34Þ
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For example,

IF sky is overcast

OR the forecast is rain

THEN the action is ‘take an umbrella’ {cf 0.9}

and the certainty of sky is overcast is 0.6 and the certainty of the forecast is rain

is 0.8, then

cf ðH;E1 [ E2Þ ¼ max ½0:6;0:8� � 0:9 ¼ 0:8 � 0:9 ¼ 0:72;

which can be interpreted as ‘Almost certainly an umbrella should be taken today’.

Sometimes two or even more rules can affect the same hypothesis. How

does an expert system cope with such situations?

When the same consequent is obtained as a result of the execution of two or

more rules, the individual certainty factors of these rules must be merged to give

a combined certainty factor for a hypothesis. Suppose the knowledge base

consists of the following rules:

Rule 1: IF A is X

THEN C is Z {cf 0.8}

Rule 2: IF B is Y

THEN C is Z {cf 0.6}

What certainty should be assigned to object C having value Z if both Rule 1 and

Rule 2 are fired? Our common sense suggests that, if we have two pieces of

evidence (A is X and B is Y) from different sources (Rule 1 and Rule 2) supporting

the same hypothesis (C is Z), then the confidence in this hypothesis should

increase and become stronger than if only one piece of evidence had been

obtained.

To calculate a combined certainty factor we can use the following equation

(Durkin, 1994):

cf ðcf1; cf2Þ ¼

cf1 þ cf2 � ð1 � cf1Þ if cf1 > 0 and cf2 > 0

cf1 þ cf2

1 � min ½jcf1j; jcf2j�
if cf1 < 0 or cf2 < 0

cf1 þ cf2 � ð1 þ cf1Þ if cf1 < 0 and cf2 < 0

8>><
>>:

ð3:35Þ

where:

cf1 is the confidence in hypothesis H established by Rule 1;

cf2 is the confidence in hypothesis H established by Rule 2;

jcf1j and jcf2j are absolute magnitudes of cf1 and cf2, respectively.
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Thus, if we assume that

cf ðE1Þ ¼ cf ðE2Þ ¼ 1:0

then from Eq. (3.32) we get:

cf1ðH;E1Þ ¼ cf ðE1Þ � cf1 ¼ 1:0 � 0:8 ¼ 0:8

cf2ðH;E2Þ ¼ cf ðE2Þ � cf2 ¼ 1:0 � 0:6 ¼ 0:6

and from Eq. (3.35) we obtain:

cf ðcf1; cf2Þ ¼ cf1ðH;E1Þ þ cf2ðH;E2Þ � ½1 � cf1ðH;E1Þ�
¼ 0:8 þ 0:6 � ð1 � 0:8Þ ¼ 0:92

This example shows an incremental increase of belief in a hypothesis and also

confirms our expectations.

Consider now a case when rule certainty factors have the opposite signs.

Suppose that

cf ðE1Þ ¼ 1 and cf ðE2Þ ¼ �1:0;

then

cf1ðH;E1Þ ¼ 1:0 � 0:8 ¼ 0:8

cf2ðH;E2Þ ¼ �1:0 � 0:6 ¼ �0:6

and from Eq. (3.35) we obtain:

cf ðcf1; cf2Þ ¼
cf1ðH; E1Þ þ cf2ðH;E2Þ

1 � min ½jcf1ðH;E1Þj; jcf2ðH;E2Þj�
¼ 0:8 � 0:6

1 � min ½0:8;0:6� ¼ 0:5

This example shows how a combined certainty factor, or in other words net

belief, is obtained when one rule, Rule 1, confirms a hypothesis but another,

Rule 2, discounts it.

Let us consider now the case when rule certainty factors have negative signs.

Suppose that:

cf ðE1Þ ¼ cf ðE2Þ ¼ �1:0;

then

cf1ðH;E1Þ ¼ �1:0 � 0:8 ¼ �0:8

cf2ðH;E2Þ ¼ �1:0 � 0:6 ¼ �0:6
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and from Eq. (3.35) we obtain:

cf ðcf1; cf2Þ ¼ cf1ðH;E1Þ þ cf2ðH;E2Þ � ½1 þ cf1ðH;E1Þ�
¼ �0:8 � 0:6 � ð1 � 0:8Þ ¼ �0:92

This example represents an incremental increase of disbelief in a hypothesis.

The certainty factors theory provides a practical alternative to Bayesian

reasoning. The heuristic manner of combining certainty factors is different from

the manner in which they would be combined if they were probabilities. The

certainty theory is not ‘mathematically pure’ but does mimic the thinking

process of a human expert.

To illustrate the evidential reasoning and the method of certainty factors

propagation through a set of rules, consider again the FORECAST expert system

developed in section 3.4.

3.7 FORECAST: an application of certainty factors

The expert system is required to predict whether it will rain tomorrow, or in

other words to establish certainty factors for the multivalued object tomorrow. To

simplify our task, we use the same set of rules as in section 3.4.

Knowledge base

/* FORECAST: AN APPLICATION OF CERTAINTY FACTORS

control cf

control ‘threshold 0.01’

Rule: 1

if today is rain

then tomorrow is rain {cf 0.5}

Rule: 2

if today is dry

then tomorrow is dry {cf 0.5}

Rule: 3

if today is rain

and rainfall is low

then tomorrow is dry {cf 0.6}

Rule: 4

if today is rain

and rainfall is low

and temperature is cold

then tomorrow is dry {cf 0.7}
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Rule: 5

if today is dry

and temperature is warm

then tomorrow is rain {cf 0.65}

Rule: 6

if today is dry

and temperature is warm

and sky is overcast

then tomorrow is rain {cf 0.55}

seek tomorrow

Dialogue

To apply an inexact reasoning technique based on certainty factors, the expert

system prompts the user to input not only the object value but also the certainty

associated with this value. For example, using the Leonardo scale from 0 to 1.0,

the following dialogue might be obtained:

What is the weather today?

) rain

Rule: 1

if today is rain

then tomorrow is rain {cf 0.5}

cf ðtomorrow is rain, today is rainÞ ¼ cf ðtoday is rainÞ � cf ¼ 1:0 � 0:5 ¼ 0:5

tomorrow is rain {0.50}

What is the rainfall today?

) low

To what degree do you believe the rainfall is low? Enter a numeric certainty

between 0 and 1.0 inclusive.

) 0.8

Rule: 3

if today is rain

and rainfall is low

then tomorrow is dry {cf 0.6}

cf ðtomorrow is dry, today is rain \ rainfall is lowÞ
¼ min ½cf ðtoday is rainÞ; cf ðrainfall is lowÞ� � cf ¼ min ½1;0:8� � 0:6 ¼ 0:48

tomorrow is rain {0.50}

dry {0.48}
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What is the temperature today?

) cold

To what degree do you believe the temperature is cold? Enter a numeric certainty

between 0 and 1.0 inclusive.

) 0.9

Rule: 4

if today is rain

and rainfall is low

and temperature is cold

then tomorrow is dry {cf 0.7}

cf ðtomorrow is dry, today is rain \ rainfall is low \ temperature is coldÞ
¼ min ½cf ðtoday is rainÞ; cf ðrainfall is lowÞ; cf ðtemperature is coldÞ� � cf

¼ min ½1;0:8;0:9� � 0:7 ¼ 0:56

tomorrow is dry {0.56}

rain {0.50}

cf ðcfRule:3; cfRule:4Þ ¼ cfRule:3 þ cfRule:4 � ð1 � cfRule:3Þ
¼ 0:48 þ 0:56 � ð1 � 0:48Þ ¼ 0:77

tomorrow is dry {0.77}

rain {0.50}

Now we would conclude that the probability of having a dry day tomorrow is

almost certain; however we also may expect some rain!

3.8 Comparison of Bayesian reasoning and certainty factors

In the previous sections, we outlined the two most popular techniques for

uncertainty management in expert systems. Now we will compare these tech-

niques and determine the kinds of problems that can make effective use of either

Bayesian reasoning or certainty factors.

Probability theory is the oldest and best-established technique to deal with

inexact knowledge and random data. It works well in such areas as forecasting

and planning, where statistical data is usually available and accurate probability

statements can be made.

An expert system that applied the Bayesian technique, PROSPECTOR, was

developed to aid exploration geologists in their search for ore deposits. It

was very successful; for example using geological, geophysical and geochemical

data, PROSPECTOR predicted the existence of molybdenum near Mount Tolman

in Washington State (Campbell et al., 1982). But the PROSPECTOR team could

rely on valid data about known mineral deposits and reliable statistical informa-

tion. The probabilities of each event were defined as well. The PROSPECTOR
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team also could assume the conditional independence of evidence, a constraint

that must be satisfied in order to apply the Bayesian approach.

However, in many areas of possible applications of expert systems, reliable

statistical information is not available or we cannot assume the conditional

independence of evidence. As a result, many researchers have found the Bayesian

method unsuitable for their work. For example, Shortliffe and Buchanan

could not use a classical probability approach in MYCIN because the medical

field often could not provide the required data (Shortliffe and Buchanan,

1975). This dissatisfaction motivated the development of the certainty factors

theory.

Although the certainty factors approach lacks the mathematical correctness

of the probability theory, it appears to outperform subjective Bayesian reasoning

in such areas as diagnostics, particularly in medicine. In diagnostic expert

systems like MYCIN, rules and certainty factors come from the expert’s knowl-

edge and his or her intuitive judgements. Certainty factors are used in cases

where the probabilities are not known or are too difficult or expensive to obtain.

The evidential reasoning mechanism can manage incrementally acquired

evidence, the conjunction and disjunction of hypotheses, as well as evidences

with different degrees of belief. Besides, the certainty factors approach provides

better explanations of the control flow through a rule-based expert system.

The Bayesian approach and certainty factors are different from one another,

but they share a common problem: finding an expert able to quantify personal,

subjective and qualitative information. Humans are easily biased, and therefore

the choice of an uncertainty management technique strongly depends on the

existing domain expert.

The Bayesian method is likely to be the most appropriate if reliable statistical

data exists, the knowledge engineer is able to lead, and the expert is available for

serious decision-analytical conversations. In the absence of any of the specified

conditions, the Bayesian approach might be too arbitrary and even biased to

produce meaningful results. It should also be mentioned that the Bayesian belief

propagation is of exponential complexity, and thus is impractical for large

knowledge bases.

The certainty factors technique, despite the lack of a formal foundation, offers

a simple approach for dealing with uncertainties in expert systems and delivers

results acceptable in many applications.

3.9 Summary

In this chapter, we presented two uncertainty management techniques used in

expert systems: Bayesian reasoning and certainty factors. We identified the main

sources of uncertain knowledge and briefly reviewed probability theory. We

considered the Bayesian method of accumulating evidence and developed a

simple expert system based on the Bayesian approach. Then we examined the

certainty factors theory (a popular alternative to Bayesian reasoning) and

developed an expert system based on evidential reasoning. Finally, we compared
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Bayesian reasoning and certainty factors, and determined appropriate areas for

their applications.

The most important lessons learned in this chapter are:

. Uncertainty is the lack of exact knowledge that would allow us to reach a

perfectly reliable conclusion. The main sources of uncertain knowledge in

expert systems are: weak implications, imprecise language, missing data and

combining the views of different experts.

. Probability theory provides an exact, mathematically correct, approach to

uncertainty management in expert systems. The Bayesian rule permits us

to determine the probability of a hypothesis given that some evidence has

been observed.

. PROSPECTOR, an expert system for mineral exploration, was the first

successful system to employ Bayesian rules of evidence to propagate uncer-

tainties throughout the system.

. In the Bayesian approach, an expert is required to provide the prior

probability of hypothesis H and values for the likelihood of sufficiency, LS,

to measure belief in the hypothesis if evidence E is present, and the likelihood

of necessity, LN, to measure disbelief in hypothesis H if the same evidence is

missing. The Bayesian method uses rules of the following form:

IF E is true {LS, LN}

THEN H is true {prior probability}

. To employ the Bayesian approach, we must satisfy the conditional independ-

ence of evidence. We also should have reliable statistical data and define the

prior probabilities for each hypothesis. As these requirements are rarely

satisfied in real-world problems, only a few systems have been built based

on Bayesian reasoning.

. Certainty factors theory is a popular alternative to Bayesian reasoning. The

basic principles of this theory were introduced in MYCIN, a diagnostic

medical expert system.

. Certainty factors theory provides a judgemental approach to uncertainty

management in expert systems. An expert is required to provide a certainty

factor, cf, to represent the level of belief in hypothesis H given that evidence E

has been observed. The certainty factors method uses rules of the following

form:

IF E is true

THEN H is true {cf}

. Certainty factors are used if the probabilities are not known or cannot be

easily obtained. Certainty theory can manage incrementally acquired

evidence, the conjunction and disjunction of hypotheses, as well as evidences

with different degrees of belief.
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. Both Bayesian reasoning and certainty theory share a common problem:

finding an expert able to quantify subjective and qualitative information.

Questions for review

1 What is uncertainty? When can knowledge be inexact and data incomplete or

inconsistent? Give an example of inexact knowledge.

2 What is probability? Describe mathematically the conditional probability of event A

occurring given that event B has occurred. What is the Bayesian rule?

3 What is Bayesian reasoning? How does an expert system rank potentially true

hypotheses? Give an example.

4 Why was the PROSPECTOR team able to apply the Bayesian approach as an

uncertainty management technique? What requirements must be satisfied before

Bayesian reasoning will be effective?

5 What are the likelihood of sufficiency and likelihood of necessity? How does an expert

determine values for LS and LN?

6 What is a prior probability? Give an example of the rule representation in the expert

system based on Bayesian reasoning.

7 How does a rule-based expert system propagate uncertainties using the Bayesian

approach?

8 Why may conditional probabilities be inconsistent with the prior probabilities provided

by the expert? Give an example of such an inconsistency.

9 Why is the certainty factors theory considered as a practical alternative to Bayesian

reasoning? What are the measure of belief and the measure of disbelief? Define a

certainty factor.

10 How does an expert system establish the net certainty for conjunctive and disjunctive

rules? Give an example for each case.

11 How does an expert system combine certainty factors of two or more rules affecting

the same hypothesis? Give an example.

12 Compare Bayesian reasoning and certainty factors. Which applications are most

suitable for Bayesian reasoning and which for certainty factors? Why? What is a

common problem in both methods?
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4Fuzzy expert systems

In which we present fuzzy set theory, consider how to build fuzzy

expert systems and illustrate the theory through an example.

4.1 Introduction, or what is fuzzy thinking?

Experts usually rely on common sense when they solve problems. They also use

vague and ambiguous terms. For example, an expert might say, ‘Though the

power transformer is slightly overloaded, I can keep this load for a while’. Other

experts have no difficulties with understanding and interpreting this statement

because they have the background to hearing problems described like this.

However, a knowledge engineer would have difficulties providing a computer

with the same level of understanding. How can we represent expert knowledge

that uses vague and ambiguous terms in a computer? Can it be done at all?

This chapter attempts to answer these questions by exploring the fuzzy set

theory (or fuzzy logic). We review the philosophical ideas behind fuzzy logic,

study its apparatus and then consider how fuzzy logic is used in fuzzy expert

systems.

Let us begin with a trivial, but still basic and essential, statement: fuzzy logic is

not logic that is fuzzy, but logic that is used to describe fuzziness. Fuzzy logic

is the theory of fuzzy sets, sets that calibrate vagueness. Fuzzy logic is based on

the idea that all things admit of degrees. Temperature, height, speed, distance,

beauty – all come on a sliding scale. The motor is running really hot. Tom is

a very tall guy. Electric cars are not very fast. High-performance drives require

very rapid dynamics and precise regulation. Hobart is quite a short distance

from Melbourne. Sydney is a beautiful city. Such a sliding scale often makes it

impossible to distinguish members of a class from non-members. When does a

hill become a mountain?

Boolean or conventional logic uses sharp distinctions. It forces us to draw

lines between members of a class and non-members. It makes us draw lines in

the sand. For instance, we may say, ‘The maximum range of an electric vehicle is

short’, regarding a range of 300 km or less as short, and a range greater than

300 km as long. By this standard, any electric vehicle that can cover a distance of

301 km (or 300 km and 500 m or even 300 km and 1 m) would be described as



long-range. Similarly, we say Tom is tall because his height is 181 cm. If we drew

a line at 180 cm, we would find that David, who is 179 cm, is small. Is David

really a small man or have we just drawn an arbitrary line in the sand? Fuzzy

logic makes it possible to avoid such absurdities.

Fuzzy logic reflects how people think. It attempts to model our sense of words,

our decision making and our common sense. As a result, it is leading to new,

more human, intelligent systems.

Fuzzy, or multi-valued logic was introduced in the 1930s by Jan Lukasiewicz, a

Polish logician and philosopher (Lukasiewicz, 1930). He studied the mathema-

tical representation of fuzziness based on such terms as tall, old and hot. While

classical logic operates with only two values 1 (true) and 0 (false), Lukasiewicz

introduced logic that extended the range of truth values to all real numbers in

the interval between 0 and 1. He used a number in this interval to represent the

possibility that a given statement was true or false. For example, the possibility

that a man 181 cm tall is really tall might be set to a value of 0.86. It is likely that

the man is tall. This work led to an inexact reasoning technique often called

possibility theory.

Later, in 1937, Max Black, a philosopher, published a paper called ‘Vagueness:

an exercise in logical analysis’ (Black, 1937). In this paper, he argued that a

continuum implies degrees. Imagine, he said, a line of countless ‘chairs’. At one

end is a Chippendale. Next to it is a near-Chippendale, in fact indistinguishable

from the first item. Succeeding ‘chairs’ are less and less chair-like, until the line

ends with a log. When does a chair become a log? The concept chair does not

permit us to draw a clear line distinguishing chair from not-chair. Max Black

also stated that if a continuum is discrete, a number can be allocated to each

element. This number will indicate a degree. But the question is degree of what.

Black used the number to show the percentage of people who would call an

element in a line of ‘chairs’ a chair; in other words, he accepted vagueness as a

matter of probability.

However, Black’s most important contribution was in the paper’s appendix.

Here he defined the first simple fuzzy set and outlined the basic ideas of fuzzy set

operations.

In 1965 Lotfi Zadeh, Professor and Head of the Electrical Engineering

Department at the University of California at Berkeley, published his famous

paper ‘Fuzzy sets’. In fact, Zadeh rediscovered fuzziness, identified and explored

it, and promoted and fought for it.

Zadeh extended the work on possibility theory into a formal system of

mathematical logic, and even more importantly, he introduced a new concept

for applying natural language terms. This new logic for representing and

manipulating fuzzy terms was called fuzzy logic, and Zadeh became the Master

of fuzzy logic.

Why fuzzy?

As Zadeh said, the term is concrete, immediate and descriptive; we all know what

it means. However, many people in the West were repelled by the word fuzzy,

because it is usually used in a negative sense.
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Why logic?

Fuzziness rests on fuzzy set theory, and fuzzy logic is just a small part of that

theory. However, Zadeh used the term fuzzy logic in a broader sense (Zadeh,

1965):

Fuzzy logic is determined as a set of mathematical principles for knowledge

representation based on degrees of membership rather than on crisp member-

ship of classical binary logic.

Unlike two-valued Boolean logic, fuzzy logic is multi-valued. It deals with

degrees of membership and degrees of truth. Fuzzy logic uses the continuum

of logical values between 0 (completely false) and 1 (completely true). Instead of

just black and white, it employs the spectrum of colours, accepting that things

can be partly true and partly false at the same time. As can be seen in Figure 4.1,

fuzzy logic adds a range of logical values to Boolean logic. Classical binary logic

now can be considered as a special case of multi-valued fuzzy logic.

4.2 Fuzzy sets

The concept of a set is fundamental to mathematics. However, our own language

is the supreme expression of sets. For example, car indicates the set of cars. When

we say a car, we mean one out of the set of cars.

Let X be a classical (crisp) set and x an element. Then the element x either

belongs to X ðx 2 XÞ or does not belong to X ðx 62 XÞ. That is, classical set theory

imposes a sharp boundary on this set and gives each member of the set the value

of 1, and all members that are not within the set a value of 0. This is known as

the principle of dichotomy. Let us now dispute this principle.

Consider the following classical paradoxes of logic.

1 Pythagorean School (400 BC):

Question: Does the Cretan philosopher tell the truth when he asserts that

‘All Cretans always lie’?

Boolean logic: This assertion contains a contradiction.

Fuzzy logic: The philosopher does and does not tell the truth!

2 Russell’s Paradox:

The barber of a village gives a hair cut only to those who do not cut their hair

themselves.

Figure 4.1 Range of logical values in Boolean and fuzzy logic: (a) Boolean logic; (b) multi-

valued logic
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Question: Who cuts the barber’s hair?

Boolean logic: This assertion contains a contradiction.

Fuzzy logic: The barber cuts and doesn’t cut his own hair!

Crisp set theory is governed by a logic that uses one of only two values: true or

false. This logic cannot represent vague concepts, and therefore fails to give the

answers on the paradoxes. The basic idea of the fuzzy set theory is that an

element belongs to a fuzzy set with a certain degree of membership. Thus, a

proposition is not either true or false, but may be partly true (or partly false) to

any degree. This degree is usually taken as a real number in the interval [0,1].

The classical example in the fuzzy set theory is tall men. The elements of the

fuzzy set ‘tall men’ are all men, but their degrees of membership depend on their

height, as shown in Table 4.1. Suppose, for example, Mark at 205 cm tall is given

a degree of 1, and Peter at 152 cm is given a degree of 0. All men of intermediate

height have intermediate degrees. They are partly tall. Obviously, different

people may have different views as to whether a given man should be considered

as tall. However, our candidates for tall men could have the memberships

presented in Table 4.1.

It can be seen that the crisp set asks the question, ‘Is the man tall?’ and draws

a line at, say, 180 cm. Tall men are above this height and not tall men below. In

contrast, the fuzzy set asks, ‘How tall is the man?’ The answer is the partial

membership in the fuzzy set, for example, Tom is 0.82 tall.

A fuzzy set is capable of providing a graceful transition across a boundary, as

shown in Figure 4.2.

We might consider a few other sets such as ‘very short men’, ‘short men’,

‘average men’ and ‘very tall men’.

In Figure 4.2 the horizontal axis represents the universe of discourse –

the range of all possible values applicable to a chosen variable. In our case, the

variable is the human height. According to this representation, the universe of

men’s heights consists of all tall men. However, there is often room for

Table 4.1 Degree of membership of ‘tall men’

Degree of membership

Name Height, cm Crisp Fuzzy

Chris 208 1 1.00

Mark 205 1 1.00

John 198 1 0.98

Tom 181 1 0.82

David 179 0 0.78

Mike 172 0 0.24

Bob 167 0 0.15

Steven 158 0 0.06

Bill 155 0 0.01

Peter 152 0 0.00
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discretion, since the context of the universe may vary. For example, the set of

‘tall men’ might be part of the universe of human heights or mammal heights, or

even all animal heights.

The vertical axis in Figure 4.2 represents the membership value of the fuzzy

set. In our case, the fuzzy set of ‘tall men’ maps height values into corresponding

membership values. As can be seen from Figure 4.2, David who is 179 cm tall,

which is just 2 cm less than Tom, no longer suddenly becomes a not tall (or short)

man (as he would in crisp sets). Now David and other men are gradually removed

from the set of ‘tall men’ according to the decrease of their heights.

What is a fuzzy set?

A fuzzy set can be simply defined as a set with fuzzy boundaries.

Let X be the universe of discourse and its elements be denoted as x. In classical

set theory, crisp set A of X is defined as function fAðxÞ called the characteristic

function of A

fAðxÞ : X ! 0;1; ð4:1Þ

where

fAðxÞ ¼
1; if x 2 A

0; if x 62 A

�

Figure 4.2 Crisp (a) and fuzzy (b) sets of ‘tall men’
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This set maps universe X to a set of two elements. For any element x of

universe X, characteristic function fAðxÞ is equal to 1 if x is an element of set A,

and is equal to 0 if x is not an element of A.

In the fuzzy theory, fuzzy set A of universe X is defined by function �AðxÞ
called the membership function of set A

�AðxÞ : X ! ½0;1�; ð4:2Þ

where

�AðxÞ ¼ 1 if x is totally in A;

�AðxÞ ¼ 0 if x is not in A;

0 < �AðxÞ < 1 if x is partly in A.

This set allows a continuum of possible choices. For any element x of universe

X, membership function �AðxÞ equals the degree to which x is an element of set

A. This degree, a value between 0 and 1, represents the degree of membership,

also called membership value, of element x in set A.

How to represent a fuzzy set in a computer?

The membership function must be determined first. A number of methods

learned from knowledge acquisition can be applied here. For example, one of the

most practical approaches for forming fuzzy sets relies on the knowledge of a

single expert. The expert is asked for his or her opinion whether various elements

belong to a given set. Another useful approach is to acquire knowledge from

multiple experts. A new technique to form fuzzy sets was recently introduced. It

is based on artificial neural networks, which learn available system operation

data and then derive the fuzzy sets automatically.

Now we return to our ‘tall men’ example. After acquiring the knowledge for

men’s heights, we could produce a fuzzy set of tall men. In a similar manner, we

could obtain fuzzy sets of short and average men. These sets are shown in Figure

4.3, along with crisp sets. The universe of discourse – the men’s heights – consists

of three sets: short, average and tall men. In fuzzy logic, as you can see, a man who

is 184 cm tall is a member of the average men set with a degree of membership

of 0.1, and at the same time, he is also a member of the tall men set with a degree of

0.4. This means that a man of 184 cm tall has partial membership in multiple sets.

Now assume that universe of discourse X, also called the reference super set,

is a crisp set containing five elements X ¼ fx1; x2; x3; x4; x5g. Let A be a crisp

subset of X and assume that A consists of only two elements, A ¼ fx2; x3g. Subset

A can now be described by A ¼ fðx1;0Þ; ðx2; 1Þ; ðx3;1Þ; ðx4;0Þ; ðx5;0Þg, i.e. as a set

of pairs fðxi; �AðxiÞg, where �AðxiÞ is the membership function of element xi in

the subset A.

The question is whether �AðxÞ can take only two values, either 0 or 1, or any

value between 0 and 1. It was also the basic question in fuzzy sets examined by

Lotfi Zadeh in 1965 (Zadeh, 1965).
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If X is the reference super set and A is a subset of X, then A is said to be a fuzzy

subset of X if, and only if,

A ¼ fðx; �AðxÞg x 2 X; �AðxÞ : X ! ½0; 1� ð4:3Þ

In a special case, when X ! f0; 1g is used instead of X ! ½0;1�, the fuzzy

subset A becomes the crisp subset A.

Fuzzy and crisp sets can be also presented as shown in Figure 4.4.

Figure 4.3 Crisp (a) and fuzzy (b) sets of short, average and tall men

Figure 4.4 Representation of crisp and fuzzy subset of X
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Fuzzy subset A of the finite reference super set X can be expressed as,

A ¼ fðx1; �Aðx1Þg; fðx2; �Aðx2Þg; . . . ; fðxn; �AðxnÞg ð4:4Þ

However, it is more convenient to represent A as,

A ¼ f�Aðx1Þ=x1g; f�Aðx2Þ=x2g; . . . ; f�AðxnÞ=xng; ð4:5Þ

where the separating symbol / is used to associate the membership value with its

coordinate on the horizontal axis.

To represent a continuous fuzzy set in a computer, we need to express it as a

function and then to map the elements of the set to their degree of membership.

Typical functions that can be used are sigmoid, gaussian and pi. These functions

can represent the real data in fuzzy sets, but they also increase the time of

computation. Therefore, in practice, most applications use linear fit functions

similar to those shown in Figure 4.3. For example, the fuzzy set of tall men in

Figure 4.3 can be represented as a fit-vector,

tall men ¼ (0/180, 0.5/185, 1/190) or

tall men ¼ (0/180, 1/190)

Fuzzy sets of short and average men can be also represented in a similar manner,

short men ¼ (1/160, 0.5/165, 0/170) or

short men ¼ (1/160, 0/170)

average men ¼ (0/165, 1/175, 0/185)

4.3 Linguistic variables and hedges

At the root of fuzzy set theory lies the idea of linguistic variables. A linguistic

variable is a fuzzy variable. For example, the statement ‘John is tall’ implies that

the linguistic variable John takes the linguistic value tall. In fuzzy expert systems,

linguistic variables are used in fuzzy rules. For example,

IF wind is strong

THEN sailing is good

IF project_duration is long

THEN completion_risk is high

IF speed is slow

THEN stopping_distance is short

The range of possible values of a linguistic variable represents the universe of

discourse of that variable. For example, the universe of discourse of the linguistic
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variable speed might have the range between 0 and 220 km per hour and may

include such fuzzy subsets as very slow, slow, medium, fast, and very fast. Each

fuzzy subset also represents a linguistic value of the corresponding linguistic

variable.

A linguistic variable carries with it the concept of fuzzy set qualifiers, called

hedges. Hedges are terms that modify the shape of fuzzy sets. They include

adverbs such as very, somewhat, quite, more or less and slightly. Hedges can modify

verbs, adjectives, adverbs or even whole sentences. They are used as

. All-purpose modifiers, such as very, quite or extremely.

. Truth-values, such as quite true or mostly false.

. Probabilities, such as likely or not very likely.

. Quantifiers, such as most, several or few.

. Possibilities, such as almost impossible or quite possible.

Hedges act as operations themselves. For instance, very performs concentra-

tion and creates a new subset. From the set of tall men, it derives the subset of very

tall men. Extremely serves the same purpose to a greater extent.

An operation opposite to concentration is dilation. It expands the set. More or

less performs dilation; for example, the set of more or less tall men is broader than

the set of tall men.

Hedges are useful as operations, but they can also break down continuums

into fuzzy intervals. For example, the following hedges could be used to describe

temperature: very cold, moderately cold, slightly cold, neutral, slightly hot, moderately

hot and very hot. Obviously these fuzzy sets overlap. Hedges help to reflect human

thinking, since people usually cannot distinguish between slightly hot and

moderately hot.

Figure 4.5 illustrates an application of hedges. The fuzzy sets shown previ-

ously in Figure 4.3 are now modified mathematically by the hedge very.

Consider, for example, a man who is 185 cm tall. He is a member of the tall

men set with a degree of membership of 0.5. However, he is also a member of the

set of very tall men with a degree of 0.15, which is fairly reasonable.

Figure 4.5 Fuzzy sets with very hedge
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Let us now consider the hedges often used in practical applications.

. Very, the operation of concentration, as we mentioned above, narrows a set

down and thus reduces the degree of membership of fuzzy elements. This

operation can be given as a mathematical square:

�
very
A ðxÞ ¼ ½�AðxÞ�2 ð4:6Þ

Hence, if Tom has a 0.86 membership in the set of tall men, he will have a

0.7396 membership in the set of very tall men.

. Extremely serves the same purpose as very, but does it to a greater extent. This

operation can be performed by raising �AðxÞ to the third power:

�
extremely
A ðxÞ ¼ ½�AðxÞ�3 ð4:7Þ

If Tom has a 0.86 membership in the set of tall men, he will have a 0.7396

membership in the set of very tall men and 0.6361 membership in the set of

extremely tall men.

. Very very is just an extension of concentration. It can be given as a square of

the operation of concentration:

�
very very
A ðxÞ ¼ ½�very

A ðxÞ�2 ¼ ½�AðxÞ�4 ð4:8Þ

For example, Tom, with a 0.86 membership in the tall men set and a 0.7396

membership in the very tall men set, will have a membership of 0.5470 in the

set of very very tall men.

. More or less, the operation of dilation, expands a set and thus increases the

degree of membership of fuzzy elements. This operation is presented as:

�more or less
A ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p
ð4:9Þ

Hence, if Tom has a 0.86 membership in the set of tall men, he will have a

0.9274 membership in the set of more or less tall men.

. Indeed, the operation of intensification, intensifies the meaning of the whole

sentence. It can be done by increasing the degree of membership above 0.5

and decreasing those below 0.5. The hedge indeed may be given by either:

�indeed
A ðxÞ ¼ 2½�AðxÞ�2 if 04�AðxÞ40:5 ð4:10Þ

or

�indeed
A ðxÞ ¼ 1 � 2½1 � �AðxÞ�2 if 0:5 < �AðxÞ41 ð4:11Þ

If Tom has a 0.86 membership in the set of tall men, he can have a 0.9608

membership in the set of indeed tall men. In contrast, Mike, who has a

0.24 membership in tall men set, will have a 0.1152 membership in the indeed

tall men set.
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Mathematical and graphical representation of hedges are summarised in

Table 4.2.

4.4 Operations of fuzzy sets

The classical set theory developed in the late 19th century by Georg Cantor

describes how crisp sets can interact. These interactions are called operations.

Table 4.2 Representation of hedges in fuzzy logic

Hedge Mathematical expression Graphical representation

A little ½�AðxÞ�1:3

Slightly ½�AðxÞ�1:7

Very ½�AðxÞ�2

Extremely ½�AðxÞ�3

Very very ½�AðxÞ�4

More or less
ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p

Somewhat
ffiffiffiffiffiffiffiffiffiffiffiffi
�AðxÞ

p

Indeed 2½�AðxÞ�2 if 04�A 40:5

1 � 2½1 � �AðxÞ�2 if 0:5 < �A 41
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We look at four of them: complement, containment, intersection and union.

These operations are presented graphically in Figure 4.6. Let us compare

operations of classical and fuzzy sets.

Complement

. Crisp sets: Who does not belong to the set?

. Fuzzy sets: How much do elements not belong to the set?

The complement of a set is an opposite of this set. For example, if we have the set

of tall men, its complement is the set of NOT tall men. When we remove the tall

men set from the universe of discourse, we obtain the complement. If A is the

fuzzy set, its complement :A can be found as follows:

�:AðxÞ ¼ 1 � �AðxÞ ð4:12Þ

For example, if we have a fuzzy set of tall men, we can easily obtain the fuzzy set

of NOT tall men:

tall men ¼ ð0=180; 0:25=182:5;0:5=185;0:75=187:5;1=190Þ
NOT tall men ¼ ð1=180; 0:75=182:5;0:5=185;0:25=187:5;0=190Þ

Containment

. Crisp sets: Which sets belong to which other sets?

. Fuzzy sets: Which sets belong to other sets?

Figure 4.6 Operations on classical sets
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Similar to a Chinese box or Russian doll, a set can contain other sets. The smaller

set is called the subset. For example, the set of tall men contains all tall men.

Therefore, very tall men is a subset of tall men. However, the tall men set is just a

subset of the set of men. In crisp sets, all elements of a subset entirely belong to

a larger set and their membership values are equal to 1. In fuzzy sets, however,

each element can belong less to the subset than to the larger set. Elements of the

fuzzy subset have smaller memberships in it than in the larger set.

tall men ¼ ð0=180;0:25=182:5;0:50=185;0:75=187:5;1=190Þ
very tall men ¼ ð0=180;0:06=182:5;0:25=185;0:56=187:5;1=190Þ

Intersection

. Crisp sets: Which element belongs to both sets?

. Fuzzy sets: How much of the element is in both sets?

In classical set theory, an intersection between two sets contains the elements

shared by these sets. If we have, for example, the set of tall men and the set of fat

men, the intersection is the area where these sets overlap, i.e. Tom is in the

intersection only if he is tall AND fat. In fuzzy sets, however, an element may

partly belong to both sets with different memberships. Thus, a fuzzy intersection

is the lower membership in both sets of each element.

The fuzzy operation for creating the intersection of two fuzzy sets A and B on

universe of discourse X can be obtained as:

�A\BðxÞ ¼ min ½�AðxÞ; �BðxÞ� ¼ �AðxÞ \ �BðxÞ; where x 2 X ð4:13Þ

Consider, for example, the fuzzy sets of tall and average men:

tall men ¼ ð0=165; 0=175;0:0=180;0:25=182:5;0:5=185;1=190Þ
average men ¼ ð0=165; 1=175;0:5=180;0:25=182:5;0:0=185;0=190Þ

According to Eq. (4.13), the intersection of these two sets is

tall men \ average men ¼ ð0=165;0=175;0=180;0:25=182:5;0=185;0=190Þ

or

tall men \ average men ¼ ð0=180;0:25=182:5;0=185Þ

This solution is represented graphically in Figure 4.3.
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Union

. Crisp sets: Which element belongs to either set?

. Fuzzy sets: How much of the element is in either set?

The union of two crisp sets consists of every element that falls into either set. For

example, the union of tall men and fat men contains all men who are tall OR fat,

i.e. Tom is in the union since he is tall, and it does not matter whether he is fat or

not. In fuzzy sets, the union is the reverse of the intersection. That is, the union

is the largest membership value of the element in either set.

The fuzzy operation for forming the union of two fuzzy sets A and B on

universe X can be given as:

�A[BðxÞ ¼ max ½�AðxÞ; �BðxÞ� ¼ �AðxÞ [ �BðxÞ; where x 2 X ð4:14Þ

Consider again the fuzzy sets of tall and average men:

tall men ¼ ð0=165; 0=175;0:0=180;0:25=182:5;0:5=185;1=190Þ
average men ¼ ð0=165; 1=175;0:5=180;0:25=182:5;0:0=185;0=190Þ

According to Eq. (4.14), the union of these two sets is

tall men [ average men ¼ ð0=165;1=175;0:5=180;0:25=182:5;0:5=185;1=190Þ

Diagrams for fuzzy set operations are shown in Figure 4.7.

Crisp and fuzzy sets have the same properties; crisp sets can be considered as

just a special case of fuzzy sets. Frequently used properties of fuzzy sets are

described below.

Commutativity

A [ B ¼ B [ A

A \ B ¼ B \ A

Example:

tall men OR short men ¼ short men OR tall men

tall men AND short men ¼ short men AND tall men

Associativity

A [ ðB [ CÞ ¼ ðA [ BÞ [ C

A \ ðB \ CÞ ¼ ðA \ BÞ \ C
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Example:

tall men OR (short men OR average men) ¼ (tall men OR short men) OR

average men

tall men AND (short men AND average men) ¼ (tall men AND short men) AND

average men

Distributivity

A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ

Example:

tall men OR (short men AND average men) ¼ (tall men OR short men) AND

(tall men OR average men)

tall men AND (short men OR average men) ¼ (tall men AND short men) OR

(tall men AND average men)

Idempotency

A [ A ¼ A

A \ A ¼ A

Figure 4.7 Operations of fuzzy sets
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Example:

tall men OR tall men ¼ tall men

tall men AND tall men ¼ tall men

Identity

A [ =O ¼ A

A \ X ¼ A

A \ =O ¼ =O

A [ X ¼ X

Example:

tall men OR undefined ¼ tall men

tall men AND unknown ¼ tall men

tall men AND undefined ¼ undefined

tall men OR unknown ¼ unknown

where undefined is an empty (null) set, the set having all degree of member-

ships equal to 0, and unknown is a set having all degree of memberships equal

to 1.

Involution

:ð:AÞ ¼ A

Example:

NOT (NOT tall men) ¼ tall men

Transitivity

If ðA � BÞ \ ðB � CÞ then A � C

Every set contains the subsets of its subsets.

Example:

IF (extremely tall men � very tall men) AND (very tall men � tall men)

THEN (extremely tall men � tall men)

De Morgan’s Laws

:ðA \ BÞ ¼ :A [ :B

:ðA [ BÞ ¼ :A \ :B

FUZZY EXPERT SYSTEMS102



Example:

NOT (tall men AND short men) ¼ NOT tall men OR NOT short men

NOT (tall men OR short men) ¼ NOT tall men AND NOT short men

Using fuzzy set operations, their properties and hedges, we can easily obtain a

variety of fuzzy sets from the existing ones. For example, if we have fuzzy set A

of tall men and fuzzy set B of short men, we can derive fuzzy set C of not very tall

men and not very short men or even set D of not very very tall and not very very short

men from the following operations:

�CðxÞ ¼ ½1 � �AðxÞ2� \ ½1 � ð�BðxÞ2�
�DðxÞ ¼ ½1 � �AðxÞ4� \ ½1 � ð�BðxÞ4�

Generally, we apply fuzzy operations and hedges to obtain fuzzy sets which

can represent linguistic descriptions of our natural language.

4.5 Fuzzy rules

In 1973, Lotfi Zadeh published his second most influential paper (Zadeh, 1973).

This paper outlined a new approach to analysis of complex systems, in which

Zadeh suggested capturing human knowledge in fuzzy rules.

What is a fuzzy rule?

A fuzzy rule can be defined as a conditional statement in the form:

IF x is A

THEN y is B

where x and y are linguistic variables; and A and B are linguistic values

determined by fuzzy sets on the universe of discourses X and Y, respectively.

What is the difference between classical and fuzzy rules?

A classical IF-THEN rule uses binary logic, for example,

Rule: 1

IF speed is > 100

THEN stopping_distance is long

Rule: 2

IF speed is < 40

THEN stopping_distance is short

The variable speed can have any numerical value between 0 and 220 km/h, but

the linguistic variable stopping_distance can take either value long or short. In
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other words, classical rules are expressed in the black-and-white language of

Boolean logic. However, we can also represent the stopping distance rules in a

fuzzy form:

Rule: 1

IF speed is fast

THEN stopping_distance is long

Rule: 2

IF speed is slow

THEN stopping_distance is short

Here the linguistic variable speed also has the range (the universe of discourse)

between 0 and 220 km/h, but this range includes fuzzy sets, such as slow, medium

and fast. The universe of discourse of the linguistic variable stopping_distance can

be between 0 and 300 m and may include such fuzzy sets as short, medium and

long. Thus fuzzy rules relate to fuzzy sets.

Fuzzy expert systems merge the rules and consequently cut the number of

rules by at least 90 per cent.

How to reason with fuzzy rules?

Fuzzy reasoning includes two distinct parts: evaluating the rule antecedent (the

IF part of the rule) and implication or applying the result to the consequent

(the THEN part of the rule).

In classical rule-based systems, if the rule antecedent is true, then the

consequent is also true. In fuzzy systems, where the antecedent is a fuzzy

statement, all rules fire to some extent, or in other words they fire partially. If

the antecedent is true to some degree of membership, then the consequent is

also true to that same degree.

Consider, for example, two fuzzy sets, ‘tall men’ and ‘heavy men’ represented

in Figure 4.8.

Figure 4.8 Fuzzy sets of tall and heavy men
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These fuzzy sets provide the basis for a weight estimation model. The model

is based on a relationship between a man’s height and his weight, which is

expressed as a single fuzzy rule:

IF height is tall

THEN weight is heavy

The value of the output or a truth membership grade of the rule consequent

can be estimated directly from a corresponding truth membership grade in the

antecedent (Cox, 1999). This form of fuzzy inference uses a method called

monotonic selection. Figure 4.9 shows how various values of men’s weight are

derived from different values for men’s height.

Can the antecedent of a fuzzy rule have multiple parts?

As a production rule, a fuzzy rule can have multiple antecedents, for example:

IF project_duration is long

AND project_staffing is large

AND project_funding is inadequate

THEN risk is high

IF service is excellent

OR food is delicious

THEN tip is generous

All parts of the antecedent are calculated simultaneously and resolved in a

single number, using fuzzy set operations considered in the previous section.

Can the consequent of a fuzzy rule have multiple parts?

The consequent of a fuzzy rule can also include multiple parts, for instance:

IF temperature is hot

THEN hot_water is reduced;

cold_water is increased

Figure 4.9 Monotonic selection of values for man weight
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In this case, all parts of the consequent are affected equally by the antecedent.

In general, a fuzzy expert system incorporates not one but several rules that

describe expert knowledge and play off one another. The output of each rule is a

fuzzy set, but usually we need to obtain a single number representing the expert

system output. In other words, we want to get a precise solution, not a fuzzy one.

How are all these output fuzzy sets combined and transformed into a

single number?

To obtain a single crisp solution for the output variable, a fuzzy expert system

first aggregates all output fuzzy sets into a single output fuzzy set, and then

defuzzifies the resulting fuzzy set into a single number. In the next section we

will see how the whole process works from the beginning to the end.

4.6 Fuzzy inference

Fuzzy inference can be defined as a process of mapping from a given input to an

output, using the theory of fuzzy sets.

4.6.1 Mamdani-style inference

The most commonly used fuzzy inference technique is the so-called Mamdani

method. In 1975, Professor Ebrahim Mamdani of London University built one

of the first fuzzy systems to control a steam engine and boiler combination

(Mamdani and Assilian, 1975). He applied a set of fuzzy rules supplied by

experienced human operators.

The Mamdani-style fuzzy inference process is performed in four steps:

fuzzification of the input variables, rule evaluation, aggregation of the rule

outputs, and finally defuzzification.

To see how everything fits together, we examine a simple two-input one-

output problem that includes three rules:

Rule: 1 Rule: 1

IF x is A3 IF project_funding is adequate

OR y is B1 OR project_staffing is small

THEN z is C1 THEN risk is low

Rule: 2 Rule: 2

IF x is A2 IF project_funding is marginal

AND y is B2 AND project_staffing is large

THEN z is C2 THEN risk is normal

Rule: 3 Rule: 3

IF x is A1 IF project_funding is inadequate

THEN z is C3 THEN risk is high

where x, y and z (project funding, project staffing and risk) are linguistic vari-

ables; A1, A2 and A3 (inadequate, marginal and adequate) are linguistic values
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determined by fuzzy sets on universe of discourse X (project funding); B1 and B2

(small and large) are linguistic values determined by fuzzy sets on universe of

discourse Y (project staffing); C1, C2 and C3 (low, normal and high) are linguistic

values determined by fuzzy sets on universe of discourse Z (risk).

The basic structure of Mamdani-style fuzzy inference for our problem is

shown in Figure 4.10.

Step 1: Fuzzification

The first step is to take the crisp inputs, x1 and y1 (project funding and

project staffing), and determine the degree to which these inputs belong

to each of the appropriate fuzzy sets.

What is a crisp input and how is it determined?

The crisp input is always a numerical value limited to the universe of

discourse. In our case, values of x1 and y1 are limited to the universe

of discourses X and Y, respectively. The ranges of the universe of

discourses can be determined by expert judgements. For instance, if we

need to examine the risk involved in developing the ‘fuzzy’ project,

we can ask the expert to give numbers between 0 and 100 per cent that

represent the project funding and the project staffing, respectively. In

other words, the expert is required to answer to what extent the project

funding and the project staffing are really adequate. Of course, various

fuzzy systems use a variety of different crisp inputs. While some of the

inputs can be measured directly (height, weight, speed, distance,

temperature, pressure etc.), some of them can be based only on expert

estimate.

Once the crisp inputs, x1 and y1, are obtained, they are fuzzified

against the appropriate linguistic fuzzy sets. The crisp input x1 (project

funding rated by the expert as 35 per cent) corresponds to the member-

ship functions A1 and A2 (inadequate and marginal) to the degrees of 0.5

and 0.2, respectively, and the crisp input y1 (project staffing rated as 60

per cent) maps the membership functions B1 and B2 (small and large) to

the degrees of 0.1 and 0.7, respectively. In this manner, each input is

fuzzified over all the membership functions used by the fuzzy rules.

Step 2: Rule evaluation

The second step is to take the fuzzified inputs, �ðx¼A1Þ ¼ 0:5, �ðx¼A2Þ ¼
0:2, �ðy¼B1Þ ¼ 0:1 and �ðy¼B2Þ ¼ 0:7, and apply them to the antecedents

of the fuzzy rules. If a given fuzzy rule has multiple antecedents, the

fuzzy operator (AND or OR) is used to obtain a single number that

represents the result of the antecedent evaluation. This number (the

truth value) is then applied to the consequent membership function.

To evaluate the disjunction of the rule antecedents, we use the OR

fuzzy operation. Typically, fuzzy expert systems make use of the

classical fuzzy operation union (4.14) shown in Figure 4.10 (Rule 1):

�A[BðxÞ ¼ max ½�AðxÞ; �BðxÞ�
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Figure 4.10 The basic structure of Mamdani-style fuzzy inference
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However, the OR operation can be easily customised if necessary. For

example, the MATLAB Fuzzy Logic Toolbox has two built-in OR

methods: max and the probabilistic OR method, probor. The probabil-

istic OR, also known as the algebraic sum, is calculated as:

�A[BðxÞ ¼ probor ½�AðxÞ; �BðxÞ� ¼ �AðxÞ þ �BðxÞ � �AðxÞ � �BðxÞ ð4:15Þ

Similarly, in order to evaluate the conjunction of the rule ante-

cedents, we apply the AND fuzzy operation intersection (4.13) also

shown in Figure 4.10 (Rule 2):

�A\BðxÞ ¼ min ½�AðxÞ; �BðxÞ�

The Fuzzy Logic Toolbox also supports two AND methods: min and the

product, prod. The product is calculated as:

�A\BðxÞ ¼ prod ½�AðxÞ; �BðxÞ� ¼ �AðxÞ � �BðxÞ ð4:16Þ

Do different methods of the fuzzy operations produce different results?

Fuzzy researchers have proposed and applied several approaches to

execute AND and OR fuzzy operators (Cox, 1999) and, of course,

different methods may lead to different results. Most fuzzy packages

also allow us to customise the AND and OR fuzzy operations and a user

is required to make the choice.

Let us examine our rules again.

Rule: 1

IF x is A3 (0.0)

OR y is B1 (0.1)

THEN z is C1 (0.1)

�C1ðzÞ ¼ max ½�A3ðxÞ; �B1ðyÞ� ¼ max ½0:0;0:1� ¼ 0:1

or

�C1ðzÞ ¼ probor ½�A3ðxÞ; �B1ðyÞ� ¼ 0:0 þ 0:1 � 0:0 � 0:1 ¼ 0:1

Rule: 2

IF x is A2 (0.2)

AND y is B2 (0.7)

THEN z is C2 (0.2)

�C2ðzÞ ¼ min ½�A2ðxÞ; �B2ðyÞ� ¼ min ½0:2;0:7� ¼ 0:2

or

�C2ðzÞ ¼ prod ½�A2ðxÞ; �B2ðyÞ� ¼ 0:2 � 0:7 ¼ 0:14

Thus, Rule 2 can be also represented as shown in Figure 4.11.

Now the result of the antecedent evaluation can be applied to the

membership function of the consequent. In other words, the con-

sequent membership function is clipped or scaled to the level of the

truth value of the rule antecedent.
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What do we mean by ‘clipped or scaled’?

The most common method of correlating the rule consequent with the

truth value of the rule antecedent is to simply cut the consequent

membership function at the level of the antecedent truth. This method

is called clipping or correlation minimum. Since the top of the

membership function is sliced, the clipped fuzzy set loses some informa-

tion. However, clipping is still often preferred because it involves less

complex and faster mathematics, and generates an aggregated output

surface that is easier to defuzzify.

While clipping is a frequently used method, scaling or correlation

product offers a better approach for preserving the original shape of

the fuzzy set. The original membership function of the rule consequent

is adjusted by multiplying all its membership degrees by the truth value

of the rule antecedent. This method, which generally loses less

information, can be very useful in fuzzy expert systems.

Clipped and scaled membership functions are illustrated in

Figure 4.12.

Step 3: Aggregation of the rule outputs

Aggregation is the process of unification of the outputs of all rules.

In other words, we take the membership functions of all rule conse-

quents previously clipped or scaled and combine them into a single

fuzzy set. Thus, the input of the aggregation process is the list of

clipped or scaled consequent membership functions, and the output is

one fuzzy set for each output variable. Figure 4.10 shows how the

output of each rule is aggregated into a single fuzzy set for the overall

fuzzy output.

Figure 4.11 The AND product fuzzy operation

Figure 4.12 Clipped (a) and scaled (b) membership functions

FUZZY EXPERT SYSTEMS110



Step 4: Defuzzification

The last step in the fuzzy inference process is defuzzification. Fuzziness

helps us to evaluate the rules, but the final output of a fuzzy system has

to be a crisp number. The input for the defuzzification process is the

aggregate output fuzzy set and the output is a single number.

How do we defuzzify the aggregate fuzzy set?

There are several defuzzification methods (Cox, 1999), but probably the

most popular one is the centroid technique. It finds the point where a

vertical line would slice the aggregate set into two equal masses.

Mathematically this centre of gravity (COG) can be expressed as

COG ¼

Z b

a

�AðxÞxdx

Z b

a

�AðxÞdx

ð4:17Þ

As Figure 4.13 shows, a centroid defuzzification method finds a

point representing the centre of gravity of the fuzzy set, A, on the

interval, ab.

In theory, the COG is calculated over a continuum of points in

the aggregate output membership function, but in practice, a reason-

able estimate can be obtained by calculating it over a sample of

points, as shown in Figure 4.13. In this case, the following formula is

applied:

COG ¼

Xb

x¼a

�AðxÞx

Xb

x¼a

�AðxÞ
ð4:18Þ

Let us now calculate the centre of gravity for our problem. The

solution is presented in Figure 4.14.

Figure 4.13 The centroid method of defuzzification
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COG¼ ð0þ10þ20Þ�0:1þð30þ40þ50þ60Þ�0:2þð70þ80þ90þ100Þ�0:5

0:1þ0:1þ0:1þ0:2þ0:2þ0:2þ0:2þ0:5þ0:5þ0:5þ0:5

¼ 67:4

Thus, the result of defuzzification, crisp output z1, is 67.4. It means,

for instance, that the risk involved in our ‘fuzzy’ project is 67.4 per

cent.

4.6.2 Sugeno-style inference

Mamdani-style inference, as we have just seen, requires us to find the centroid of

a two-dimensional shape by integrating across a continuously varying function.

In general, this process is not computationally efficient.

Could we shorten the time of fuzzy inference?

We can use a single spike, a singleton, as the membership function of the rule

consequent. This method was first introduced by Michio Sugeno, the ‘Zadeh of

Japan’, in 1985 (Sugeno, 1985). A singleton, or more precisely a fuzzy singleton,

is a fuzzy set with a membership function that is unity at a single particular point

on the universe of discourse and zero everywhere else.

Sugeno-style fuzzy inference is very similar to the Mamdani method. Sugeno

changed only a rule consequent. Instead of a fuzzy set, he used a mathematical

function of the input variable. The format of the Sugeno-style fuzzy rule is

IF x is A

AND y is B

THEN z is f ðx; yÞ

where x, y and z are linguistic variables; A and B are fuzzy sets on universe of

discourses X and Y, respectively; and f ðx; yÞ is a mathematical function.

Figure 4.14 Defuzzifying the solution variable’s fuzzy set
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Figure 4.15 The basic structure of Sugeno-style fuzzy inference
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The most commonly used zero-order Sugeno fuzzy model applies fuzzy rules

in the following form:

IF x is A

AND y is B

THEN z is k

where k is a constant.

In this case, the output of each fuzzy rule is constant. In other words, all

consequent membership functions are represented by singleton spikes. Figure

4.15 shows the fuzzy inference process for a zero-order Sugeno model. Let us

compare Figure 4.15 with Figure 4.10. The similarity of Sugeno and Mamdani

methods is quite noticeable. The only distinction is that rule consequents are

singletons in Sugeno’s method.

How is the result, crisp output, obtained?

As you can see from Figure 4.15, the aggregation operation simply includes all

the singletons. Now we can find the weighted average (WA) of these singletons:

WA ¼ �ðk1Þ� k1þ�ðk2Þ� k2þ�ðk3Þ� k3

�ðk1Þþ�ðk2Þþ�ðk3Þ ¼ 0:1�20þ0:2�50þ0:5�80

0:1þ0:2þ0:5
¼ 65

Thus, a zero-order Sugeno system might be sufficient for our problem’s needs.

Fortunately, singleton output functions satisfy the requirements of a given

problem quite often.

How do we make a decision on which method to apply – Mamdani or

Sugeno?

The Mamdani method is widely accepted for capturing expert knowledge. It

allows us to describe the expertise in more intuitive, more human-like manner.

However, Mamdani-type fuzzy inference entails a substantial computational

burden. On the other hand, the Sugeno method is computationally effective and

works well with optimisation and adaptive techniques, which makes it very

attractive in control problems, particularly for dynamic nonlinear systems.

4.7 Building a fuzzy expert system

To illustrate the design of a fuzzy expert system, we will consider a problem of

operating a service centre of spare parts (Turksen et al., 1992).

A service centre keeps spare parts and repairs failed ones. A customer brings a

failed item and receives a spare of the same type. Failed parts are repaired, placed

on the shelf, and thus become spares. If the required spare is available on the

shelf, the customer takes it and leaves the service centre. However, if there is no

spare on the shelf, the customer has to wait until the needed item becomes

available. The objective here is to advise a manager of the service centre on

certain decision policies to keep the customers satisfied.
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A typical process in developing the fuzzy expert system incorporates the

following steps:

1. Specify the problem and define linguistic variables.

2. Determine fuzzy sets.

3. Elicit and construct fuzzy rules.

4. Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy inference

into the expert system.

5. Evaluate and tune the system.

Step 1: Specify the problem and define linguistic variables

The first, and probably the most important, step in building any expert

system is to specify the problem. We need to describe our problem in

terms of knowledge engineering. In other words, we need to determine

problem input and output variables and their ranges.

For our problem, there are four main linguistic variables: average

waiting time (mean delay) m, repair utilisation factor of the service

centre �, number of servers s, and initial number of spare parts n.

The customer’s average waiting time, m, is the most important

criterion of the service centre’s performance. The actual mean delay

in service should not exceed the limits acceptable to customers.

The repair utilisation factor of the service centre, �, is the ratio of the

customer arrival rate, �, to the customer departure rate, �. Magnitudes

of � and � indicate the rates of an item’s failure (failures per unit time)

and repair (repairs per unit time), respectively. Apparently, the

repair rate is proportional to the number of servers, s. To increase

the productivity of the service centre, its manager will try to keep the

repair utilisation factor as high as possible.

The number of servers, s, and the initial number of spares, n, directly

affect the customer’s average waiting time, and thus have a major

impact on the centre’s performance. By increasing s and n, we achieve

lower values of the mean delay, but, at the same time we increase the

costs of employing new servers, building up the number of spares and

expanding the inventory capacities of the service centre for additional

spares.

Let us determine the initial number of spares n, given the customer’s

mean delay m, number of servers s, and repair utilisation factor, �.

Thus, in the decision model considered here, we have three inputs –

m, s and �, and one output – n. In other words, a manager of the service

centre wants to determine the number of spares required to maintain

the actual mean delay in customer service within an acceptable range.

Now we need to specify the ranges of our linguistic variables.

Suppose we obtain the results shown in Table 4.3 where the intervals

for m, s and n are normalised to be within the range of ½0; 1� by dividing

base numerical values by the corresponding maximum magnitudes.
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Note, that for the customer mean delay m, we consider only three

linguistic values – Very Short, Short and Medium because other values

such as Long and Very Long are simply not practical. A manager of the

service centre cannot afford to keep customers waiting longer than a

medium time.

In practice, all linguistic variables, linguistic values and their ranges

are usually chosen by the domain expert.

Step 2: Determine fuzzy sets

Fuzzy sets can have a variety of shapes. However, a triangle or a trapezoid

can often provide an adequate representation of the expert knowledge,

and at the same time significantly simplifies the process of computation.

Figures 4.16 to 4.19 show the fuzzy sets for all linguistic variables

used in our problem. As you may notice, one of the key points here is to

maintain sufficient overlap in adjacent fuzzy sets for the fuzzy system

to respond smoothly.

Table 4.3 Linguistic variables and their ranges

Linguistic variable: Mean delay, m

Linguistic value Notation Numerical range (normalised)

Very Short VS [0, 0.3]

Short S [0.1, 0.5]

Medium M [0.4, 0.7]

Linguistic variable: Number of servers, s

Linguistic value Notation Numerical range (normalised)

Small S [0, 0.35]

Medium M [0.30, 0.70]

Large L [0.60, 1]

Linguistic variable: Repair utilisation factor, q

Linguistic value Notation Numerical range

Low L [0, 0.6]

Medium M [0.4, 0.8]

High H [0.6, 1]

Linguistic variable: Number of spares, n

Linguistic value Notation Numerical range (normalised)

Very Small VS [0, 0.30]

Small S [0, 0.40]

Rather Small RS [0.25, 0.45]

Medium M [0.30, 0.70]

Rather Large RL [0.55, 0.75]

Large L [0.60, 1]

Very Large VL [0.70, 1]
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Figure 4.16 Fuzzy sets of mean delay m

Figure 4.17 Fuzzy sets of number of servers s

Figure 4.18 Fuzzy sets of repair utilisation factor �

Figure 4.19 Fuzzy sets of number of spares n
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Step 3: Elicit and construct fuzzy rules

Next we need to obtain fuzzy rules. To accomplish this task, we might

ask the expert to describe how the problem can be solved using the

fuzzy linguistic variables defined previously.

Required knowledge also can be collected from other sources such as

books, computer databases, flow diagrams and observed human behav-

iour. In our case, we could apply rules provided in the research paper

(Turksen et al., 1992).

There are three input and one output variables in our example. It is

often convenient to represent fuzzy rules in a matrix form. A two-by-

one system (two inputs and one output) is depicted as an M � N matrix

of input variables. The linguistic values of one input variable form the

horizontal axis and the linguistic values of the other input variable

form the vertical axis. At the intersection of a row and a column lies

the linguistic value of the output variable. For a three-by-one system

(three inputs and one output), the representation takes the shape of an

M � N � K cube. This form of representation is called a fuzzy associa-

tive memory (FAM).

Let us first make use of a very basic relation between the repair

utilisation factor �, and the number of spares n, assuming that other

input variables are fixed. This relation can be expressed in the following

form: if � increases, then n will not decrease. Thus we could write the

following three rules:

1. If (utilisation_factor is L) then (number_of_spares is S)
2. If (utilisation_factor is M) then (number_of_spares is M)
3. If (utilisation_factor is H) then (number_of_spares is L)

Now we can develop the 3 � 3 FAM that will represent the rest of

the rules in a matrix form. The results of this effort are shown in

Figure 4.20.

Meanwhile, a detailed analysis of the service centre operation,

together with an ‘expert touch’ (Turksen et al., 1992), may enable us

to derive 27 rules that represent complex relationships between all

variables used in the expert system. Table 4.4 contains these rules and

Figure 4.21 shows the cube ð3 � 3 � 3Þ FAM representation.

Figure 4.20 The square FAM representation
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First we developed 12 ð3 þ 3 � 3Þ rules, but then we obtained 27

ð3 � 3 � 3Þ rules. If we implement both schemes, we can compare

results; only the system’s performance can tell us which scheme is

better.

Rule Base 1
1. If (utilisation_factor is L) then (number_of_spares is S)
2. If (utilisation_factor is M) then (number_of_spares is M)
3. If (utilisation_factor is H) then (number_of_spares is L)

4. If (mean_delay is VS) and (number_of_servers is S)
then (number_of_spares is VL)

5. If (mean_delay is S) and (number_of_servers is S)
then (number_of_spares is L)

Table 4.4 The rule table

Rule m s � n Rule m s � n Rule m s � n

1 VS S L VS 10 VS S M S 19 VS S H VL

2 S S L VS 11 S S M VS 20 S S H L

3 M S L VS 12 M S M VS 21 M S H M

4 VS M L VS 13 VS M M RS 22 VS M H M

5 S M L VS 14 S M M S 23 S M H M

6 M M L VS 15 M M M VS 24 M M H S

7 VS L L S 16 VS L M M 25 VS L H RL

8 S L L S 17 S L M RS 26 S L H M

9 M L L VS 18 M L M S 27 M L H RS

Figure 4.21 Cube FAM and sliced cube FAM representations
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6. If (mean_delay is M) and (number_of_servers is S)
then (number_of_spares is M)

7. If (mean_delay is VS) and (number_of_servers is M)
then (number_of_spares is RL)

8. If (mean_delay is S) and (number_of_servers is M)
then (number_of_spares is RS)

9. If (mean_delay is M) and (number_of_servers is M)
then (number_of_spares is S)

10. If (mean_delay is VS) and (number_of_servers is L)
then (number_of_spares is M)

11. If (mean_delay is S) and (number_of_servers is L)
then (number_of_spares is S)

12. If (mean_delay is M) and (number_of_servers is L)
then (number_of_spares is VS)

Rule Base 2
1. If (mean_delay is VS) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
2. If (mean_delay is S) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
3. If (mean_delay is M) and (number_of_servers is S)

and (utilisation_factor is L) then (number_of_spares is VS)
4. If (mean_delay is VS) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
5. If (mean_delay is S) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
6. If (mean_delay is M) and (number_of_servers is M)

and (utilisation_factor is L) then (number_of_spares is VS)
7. If (mean_delay is VS) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is S)
8. If (mean_delay is S) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is S)
9. If (mean_delay is M) and (number_of_servers is L)

and (utilisation_factor is L) then (number_of_spares is VS)

10. If (mean_delay is VS) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is S)

11. If (mean_delay is S) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is VS)

12. If (mean_delay is M) and (number_of_servers is S)
and (utilisation_factor is M) then (number_of_spares is VS)

13. If (mean_delay is VS) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is RS)

14. If (mean_delay is S) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is S)

15. If (mean_delay is M) and (number_of_servers is M)
and (utilisation_factor is M) then (number_of_spares is VS)

16. If (mean_delay is VS) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is M)

17. If (mean_delay is S) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is RS)

18. If (mean_delay is M) and (number_of_servers is L)
and (utilisation_factor is M) then (number_of_spares is S)

19. If (mean_delay is VS) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is VL)
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20. If (mean_delay is S) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is L)

21. If (mean_delay is M) and (number_of_servers is S)
and (utilisation_factor is H) then (number_of_spares is M)

22. If (mean_delay is VS) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is M)

23. If (mean_delay is S) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is M)

24. If (mean_delay is M) and (number_of_servers is M)
and (utilisation_factor is H) then (number_of_spares is S)

25. If (mean_delay is VS) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is RL)

26. If (mean_delay is S) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is M)

27. If (mean_delay is M) and (number_of_servers is L)
and (utilisation_factor is H) then (number_of_spares is RS)

Step 4: Encode the fuzzy sets, fuzzy rules and procedures to perform fuzzy

inference into the expert system

The next task after defining fuzzy sets and fuzzy rules is to encode

them, and thus actually build a fuzzy expert system. To accomplish this

task, we may choose one of two options: to build our system using a

programming language such as C or Pascal, or to apply a fuzzy logic

development tool such as MATLAB Fuzzy Logic Toolbox1 from the

MathWorks or Fuzzy Knowledge BuilderTM from Fuzzy Systems

Engineering.

Most experienced fuzzy system builders often prefer the C/C++

programming language (Cox, 1999; Li and Gupta, 1995) because it

offers greater flexibility. However, for rapid developing and proto-

typing a fuzzy expert system, the best choice is a fuzzy logic

development tool. Such a tool usually provides complete environments

for building and testing fuzzy systems. For example, the MATLAB Fuzzy

Logic Toolbox has five integrated graphical editors: the fuzzy inference

system editor, the rule editor, the membership function editor, the

fuzzy inference viewer, and the output surface viewer. All these features

make designing fuzzy systems much easier. This option is also prefer-

able for novices, who do not have sufficient experience in building

fuzzy expert systems. When a fuzzy logic development tool is chosen,

the knowledge engineer needs only to encode fuzzy rules in English-

like syntax, and define membership functions graphically.

To build our fuzzy expert system, we will use one of the most

popular tools, the MATLAB Fuzzy Logic Toolbox. It provides a system-

atic framework for computing with fuzzy rules and graphical user

interfaces. It is easy to master and convenient to use, even for new

fuzzy system builders.

Step 5: Evaluate and tune the system

The last, and the most laborious, task is to evaluate and tune the system.

We want to see whether our fuzzy system meets the requirements
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specified at the beginning. Several test situations depend on the mean

delay, number of servers and repair utilisation factor. The Fuzzy Logic

Toolbox can generate surface to help us analyse the system’s perform-

ance. Figure 4.22 represents three-dimensional plots for the two-input

one-output system.

But our system has three inputs and one output. Can we move

beyond three dimensions? When we move beyond three dimensions,

we encounter difficulties in displaying the results. Luckily, the

Fuzzy Logic Toolbox has a special capability: it can generate a three-

dimensional output surface by varying any two of the inputs and

keeping other inputs constant. Thus we can observe the performance of

our three-input one-output system on two three-dimensional plots.

Although the fuzzy system works well, we may attempt to improve it

by applying Rule Base 2. The results are shown in Figure 4.23. If we

compare Figures 4.22 and 4.23, we will see the improvement.

However, even now, the expert might not be satisfied with the

system performance. To improve it, he or she may suggest additional

sets – Rather Small and Rather Large – on the universe of discourse

Number of servers (as shown in Figure 4.24), and to extend the rule base

according to the FAM presented in Figure 4.25. The ease with which a

fuzzy system can be modified and extended permits us to follow the

expert suggestions and quickly obtain results shown in Figure 4.26.

Figure 4.22 Three-dimensional plots for rule base 1

Figure 4.23 Three-dimensional plots for rule base 2
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Figure 4.24 Modified fuzzy sets of number of servers s

Figure 4.25 Cube FAM of rule base 3

Figure 4.26 Three-dimensional plots for rule base 3
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In general, tuning a fuzzy expert system takes much more time and effort

than determining fuzzy sets and constructing fuzzy rules. Usually a reasonable

solution to the problem can be achieved from the first series of fuzzy sets and

fuzzy rules. This is an acknowledged advantage of fuzzy logic; however, improv-

ing the system becomes rather an art than engineering.

Tuning fuzzy systems may involve executing a number of actions in the

following order:

1 Review model input and output variables, and if required redefine their

ranges. Pay particular attention to the variable units. Variables used in the

same domain must be measured in the same units on the universe of

discourse.

2 Review the fuzzy sets, and if required define additional sets on the universe

of discourse. The use of wide fuzzy sets may cause the fuzzy system to

perform roughly.

3 Provide sufficient overlap between neighbouring sets. Although there is no

precise method to determine the optimum amount of overlap, it is

suggested that triangle-to-triangle and trapezoid-to-triangle fuzzy sets

should overlap between 25 and 50 per cent of their bases (Cox, 1999).

4 Review the existing rules, and if required add new rules to the rule base.

5 Examine the rule base for opportunities to write hedge rules to capture the

pathological behaviour of the system.

6 Adjust the rule execution weights. Most fuzzy logic tools allow control of the

importance of rules by changing a weight multiplier.

In the Fuzzy Logic Toolbox, all rules have a default weight of (1.0), but

the user can reduce the force of any rule by adjusting its weight. For

example, if we specify

If (utilisation_factor is H) then (number_of_spares is L) (0.6)

then the rule’s force will be reduced by 40 per cent.

7 Revise shapes of the fuzzy sets. In most cases, fuzzy systems are highly

tolerant of a shape approximation, and thus a system can still behave well

even when the shapes of the fuzzy sets are not precisely defined.

But how about defuzzification methods? Should we try different

techniques to tune our system?

The centroid technique appears to provide consistent results. This is a well-

balanced method sensitive to the height and width of the total fuzzy region as

well as to sparse singletons. Therefore, unless you have a strong reason to believe

that your fuzzy system will behave better under other defuzzification methods,

the centroid technique is recommended.
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4.8 Summary

In this chapter, we introduced fuzzy logic and discussed the philosophical ideas

behind it. We presented the concept of fuzzy sets, considered how to represent a

fuzzy set in a computer, and examined operations of fuzzy sets. We also defined

linguistic variables and hedges. Then we presented fuzzy rules and explained the

main differences between classical and fuzzy rules. We explored two fuzzy

inference techniques – Mamdani and Sugeno – and suggested appropriate areas

for their application. Finally, we introduced the main steps in developing a fuzzy

expert system, and illustrated the theory through the actual process of building

and tuning a fuzzy system.

The most important lessons learned in this chapter are:

. Fuzzy logic is a logic that describes fuzziness. As fuzzy logic attempts to model

humans’ sense of words, decision making and common sense, it is leading to

more human intelligent machines.

. Fuzzy logic was introduced by Jan Lukasiewicz in the 1920s, scrutinised by

Max Black in the 1930s, and rediscovered, extended into a formal system of

mathematical logic and promoted by Lotfi Zadeh in the 1960s.

. Fuzzy logic is a set of mathematical principles for knowledge representation

based on degrees of membership rather than on the crisp membership of

classical binary logic. Unlike two-valued Boolean logic, fuzzy logic is multi-

valued.

. A fuzzy set is a set with fuzzy boundaries, such as short, average or tall for men’s

height. To represent a fuzzy set in a computer, we express it as a function

and then map the elements of the set to their degree of membership. Typical

membership functions used in fuzzy expert systems are triangles and

trapezoids.

. A linguistic variable is used to describe a term or concept with vague or fuzzy

values. These values are represented in fuzzy sets.

. Hedges are fuzzy set qualifiers used to modify the shape of fuzzy sets. They

include adverbs such as very, somewhat, quite, more or less and slightly. Hedges

perform mathematical operations of concentration by reducing the degree of

membership of fuzzy elements (e.g. very tall men), dilation by increasing the

degree of membership (e.g. more or less tall men) and intensification by

increasing the degree of membership above 0.5 and decreasing those below

0.5 (e.g. indeed tall men).

. Fuzzy sets can interact. These relations are called operations. The main

operations of fuzzy sets are: complement, containment, intersection and

union.

. Fuzzy rules are used to capture human knowledge. A fuzzy rule is a

conditional statement in the form:

IF x is A

THEN y is B
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where x and y are linguistic variables and A and B are linguistic values

determined by fuzzy sets.

. Fuzzy inference is a process of mapping from a given input to an output by

using the theory of fuzzy sets. The fuzzy inference process includes four steps:

fuzzification of the input variables, rule evaluation, aggregation of the rule

outputs and defuzzification.

. The two fuzzy inference techniques are the Mamdani and Sugeno methods.

The Mamdani method is widely accepted in fuzzy expert systems for its ability

to capture expert knowledge in fuzzy rules. However, Mamdani-type fuzzy

inference entails a substantial computational burden.

. To improve the computational efficiency of fuzzy inference, Sugeno used a

single spike, a singleton, as the membership function of the rule consequent.

The Sugeno method works well with optimisation and adaptive techniques,

which makes it very attractive in control, particularly for dynamic nonlinear

systems.

. Building a fuzzy expert system is an iterative process that involves defining

fuzzy sets and fuzzy rules, evaluating and then tuning the system to meet the

specified requirements.

. Tuning is the most laborious and tedious part in building a fuzzy system. It

often involves adjusting existing fuzzy sets and fuzzy rules.

Questions for review

1 What is fuzzy logic? Who are the founders of fuzzy logic? Why is fuzzy logic leading to

more human intelligent machines?

2 What are a fuzzy set and a membership function? What is the difference between a

crisp set and a fuzzy set? Determine possible fuzzy sets on the universe of discourse

for man weights.

3 Define a linguistic variable and its value. Give an example. How are linguistic variables

used in fuzzy rules? Give a few examples of fuzzy rules.

4 What is a hedge? How do hedges modify the existing fuzzy sets? Give examples of

hedges performing operations of concentration, dilation and intensification. Provide

appropriate mathematical expressions and their graphical representations.

5 Define main operations of fuzzy sets. Provide examples. How are fuzzy set operations,

their properties and hedges used to obtain a variety of fuzzy sets from the existing

ones?

6 What is a fuzzy rule? What is the difference between classical and fuzzy rules? Give

examples.

7 Define fuzzy inference. What are the main steps in the fuzzy inference process?

8 How do we evaluate multiple antecedents of fuzzy rules? Give examples. Can different

methods of executing the AND and OR fuzzy operations provide different results? Why?
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9 What is clipping a fuzzy set? What is scaling a fuzzy set? Which method best preserves

the original shape of the fuzzy set? Why? Give an example.

10 What is defuzzification? What is the most popular defuzzification method? How do we

determine the final output of a fuzzy system mathematically and graphically?

11 What are the differences between Mamdani-type and Sugeno-type fuzzy inferences?

What is a singleton?

12 What are the main steps in developing a fuzzy expert system? What is the most

laborious and tedious part in this process? Why?
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5Frame-based expert systems

In which we introduce frames as one of the common methods used

for representing knowledge in expert systems, describe how to

develop a frame-based expert system and illustrate the theory

through an example.

5.1 Introduction, or what is a frame?

Knowledge in a computer can be represented through several techniques. In the

previous chapters, we considered rules. In this chapter, we will use frames for

the knowledge representation.

What is a frame?

A frame is a data structure with typical knowledge about a particular object or

concept. Frames, first proposed by Marvin Minsky in the 1970s (Minsky, 1975),

are used to capture and represent knowledge in a frame-based expert system.

Boarding passes shown in Figure 5.1 represent typical frames with knowledge

about airline passengers. Both frames have the same structure.

Each frame has its own name and a set of attributes, or slots, associated with

it. Name, weight, height and age are slots in the frame Person. Model, processor,

memory and price are slots in the frame Computer. Each attribute or slot has a

value attached to it. In Figure 5.1(a), for example, slot Carrier has value QANTAS

AIRWAYS and slot Gate has value 2. In some cases, instead of a particular value, a

slot may have a procedure that determines the value.

In expert systems, frames are often used in conjunction with production

rules.

Why is it necessary to use frames?

Frames provide a natural way for the structured and concise representation of

knowledge. In a single entity, a frame combines all necessary knowledge about a

particular object or concept. A frame provides a means of organising knowledge

in slots to describe various attributes and characteristics of the object.

Earlier we argued that many real-world problems can be naturally expressed

by IF-THEN production rules. However, a rule-based expert system using a



systematic search technique works with facts scattered throughout the entire

knowledge base. It may search through the knowledge that is not relevant to a

given problem, and as a result, the search may take a great deal of time. If, for

example, we are searching for knowledge about Qantas frequent flyers, then we

want to avoid the search through knowledge about Air New Zealand or British

Airways passengers. In this situation, we need frames to collect the relevant facts

within a single structure.

Basically, frames are an application of object-oriented programming for

expert systems.

What is object-oriented programming?

Object-oriented programming can be defined as a programming method that

uses objects as a basis for analysis, design and implementation. In object-

oriented programming, an object is defined as a concept, abstraction or thing

with crisp boundaries and meaning for the problem at hand (Rumbaugh et al.,

1991). All objects have identity and are clearly distinguishable. Michael Black,

Audi 5000 Turbo, IBM Aptiva S35 are examples of objects.

An object combines both data structure and its behaviour in a single entity.

This is in sharp contrast to conventional programming, in which data structure

and the program behaviour have concealed or vague connections.

Object-oriented programming offers a natural way of representing the real

world in a computer, and also illuminates the problem of data dependency,

which is inherent in conventional programming (Taylor, 1992). When program-

mers create an object in an object-oriented programming language, they first

assign a name to the object, then determine a set of attributes to describe the

object’s characteristics, and at last write procedures to specify the object’s

behaviour.

A knowledge engineer refers to an object as a frame, the term introduced

by Minsky, which has become the AI jargon. Today the terms are used as

synonyms.

Figure 5.1 Boarding pass frames
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5.2 Frames as a knowledge representation technique

The concept of a frame is defined by a collection of slots. Each slot describes a

particular attribute or operation of the frame. In many respects, a frame

resembles the traditional ‘record’ that contains information relevant to typical

entities. Slots are used to store values. A slot may contain a default value or a

pointer to another frame, a set of rules or procedure by which the slot value is

obtained. In general, slots may include such information as:

1. Frame name.

2. Relationship of the frame to the other frames. The frame IBM Aptiva S35

might be a member of the class Computer, which in turn might belong to the

class Hardware.

3. Slot value. A slot value can be symbolic, numeric or Boolean. For example,

in the frames shown in Figure 5.1, the slot Name has symbolic values, and

the slot Gate numeric values. Slot values can be assigned when the frame is

created or during a session with the expert system.

4. Default slot value. The default value is taken to be true when no evidence to

the contrary has been found. For example, a car frame might have four

wheels and a chair frame four legs as default values in the corresponding

slots.

5. Range of the slot value. The range of the slot value determines whether a

particular object or concept complies with the stereotype requirements

defined by the frame. For example, the cost of a computer might be specified

between $750 and $1500.

6. Procedural information. A slot can have a procedure (a self-contained

arbitrary piece of computer code) attached to it, which is executed if the slot

value is changed or needed. There are two types of procedures often attached

to slots:

(a) WHEN CHANGED procedure is executed when new information is

placed in the slot.

(b) WHEN NEEDED procedure is executed when information is needed for

the problem solving, but the slot value is unspecified.

Such procedural attachments are often called demons.

Frame-based expert systems also provide an extension to the slot-value

structure through the application of facets.

What is a facet?

A facet is a means of providing extended knowledge about an attribute of a

frame. Facets are used to establish the attribute value, control end-user queries,

and tell the inference engine how to process the attribute.

In general, frame-based expert systems allow us to attach value, prompt

and inference facets to attributes. Value facets specify default and initial values
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of an attribute. Prompt facets enable the end-user to enter the attribute value

on-line during a session with the expert system. And finally, inference facets

allow us to stop the inference process when the value of a specified attribute

changes.

What is the correct level of decomposition of a problem into frames, slots

and facets?

Decomposition of a problem into frames, frames into slots and facets depends on

the nature of the problem itself and the judgement of the knowledge engineer.

There is no predefined ‘correct’ representation.

Figure 5.2 illustrates frames describing computers. The topmost frame repres-

ents the class Computer and the frames below describe instances IBM Aptiva S35

and IBM Aptiva S9C. Two types of attributes are used here: string [Str] for symbolic

information and numeric [N] for numeric data. Note default and initial value

facets attached to the slots Floppy, Power Supply, Warranty and Stock in the class

Computer. The attribute names, types, default and initial values are the properties

inherited by instances.

What are the class and instances?

The word ‘frame’ often has a vague meaning. The frame may refer to a particular

object, for example the computer IBM Aptiva S35, or to a group of similar objects.

To be more precise, we will use the instance-frame when referring to a particular

object, and the class-frame when referring to a group of similar objects.

A class-frame describes a group of objects with common attributes. Animal,

person, car and computer are all class-frames. In AI, however, the abbreviation

‘class’ is often used instead of the term ‘class-frame’.

Each frame in a frame-based system ‘knows’ its class. In other words, the

frame’s class is an implicit property of the frame. For example, instances in

Figure 5.2 identify their class in the slot Class.

If objects are the basis of the frame-based systems, why bother with

classes?

Grouping objects into classes helps us to represent a problem in an abstract form.

Minsky himself described frames as ‘data structures for representing stereotyped

situations’. In general, we are less concerned with defining strictly and exhaus-

tively the properties of each object, and more concerned with the salient

properties typical for the entire class. Let us take, for example, the class of birds.

Can a bird fly? A typical answer is yes. Almost all birds can fly, and thus we think

of the ability to fly as being an essential property of the class of birds, even

though there are birds, such as ostriches, which cannot fly. In other words, an

eagle is a better member of the class bird than an ostrich because an eagle is a

more typical representative of birds.

Frame-based systems support class inheritance. The fundamental idea of

inheritance is that attributes of the class-frame represent things that are

typically true for all objects in the class. However, slots in the instance-frames

can be filled with actual data uniquely specified for each instance.
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Consider the simple frame structure represented in Figure 5.3. The class

Passenger car has several attributes typical for all cars. This class is too hetero-

geneous to have any of the attributes filled in, even though we can place certain

restrictions upon such attributes as Engine type, Drivetrain type and Transmission

type. Note that these attributes are declared as compound [C]. Compound

attributes can assume only one value from a group of symbolic values, for

Figure 5.2 Computer class and instances
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Figure 5.3 Inheritance of slot values in a simple frame structure: (a) relations of the car

frames; (b) car frames and their slots
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example the attribute Engine type can assume the value of either In-line 4 cylinder

or V6, but not both.

The class Mazda is linked to its superclass Passenger car by the ‘is-a’ relation.

The Mazda inherits all attributes of the superclass and also declares the attribute

Country of manufacture with the default value Japan attached to it. The class

Mazda 626 introduces three additional attributes: Model, Colour and Owner.

Finally, the instance-frame Mazda DR-1216 inherits its country of manufacture

from the Mazda frame, as the Mazda 626 does, and establishes single values for

all compound attributes.

Can an instance-frame overwrite attribute values inherited from the class-

frame?

An instance-frame can overwrite, or in other words violate, some of the typical

attribute values in the hierarchy. For example, the class Mazda 626 has an average

fuel consumption of 22 miles per gallon, but the instance Mazda DR-1216 has a

worse figure because it has done a lot of miles. Thus the Mazda DR-1216 frame

remains the instance of the class Mazda 626, with access to the properties further

up the hierarchy, even though it violates the typical value in its class.

Relationships between frames in such a hierarchy constitute a process of

specialisation. The class-frame on the top of the hierarchy represents some

generic concept, class-frames further down stand for a more restricted concept

and the instances are closer to exemplification.

How are objects related in a frame-based system? Is the ‘is-a’

relationship the only one available to us?

In general, there are three types of relationships between objects: generalisation,

aggregation and association.

Generalisation denotes ‘a-kind-of’ or ‘is-a’ relationship between a superclass

and its subclasses. For example, a car is a vehicle, or in other words, Car

represents a subclass of the more general superclass Vehicle. Each subclass

inherits all features of the superclass.

Aggregation is ‘a-part-of’ or ‘part-whole’ relationship in which several

subclasses representing components are associated with a superclass represent-

ing a whole. For example, an engine is a part of a car.

Association describes some semantic relationship between different classes

which are unrelated otherwise. For example, Mr Black owns a house, a car and a

computer. Such classes as House, Car and Computer are mutually independent,

but they are linked with the frame Mr Black through the semantic association.

Unlike generalisation and aggregation relationships, associations usually

appear as verbs and are inherently bi-directional.

Does a computer own Mr Black? Of course, the name of a bi-directional

association reads in a particular direction (Mr Black owns a computer), but this

direction can be changed to the opposite. The inverse of owns is belongs to, and

thus we can anticipate that a computer belongs to Mr Black. In fact, both

directions are equally meaningful and refer to the same association.

Figure 5.4 illustrates all three types of relationships between different objects.
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5.3 Inheritance in frame-based systems

Inheritance is an essential feature of frame-based systems. Inheritance can be

defined as the process by which all characteristics of a class-frame are assumed by

the instance-frame.

A common use of inheritance is to impose default features on all instance-

frames. We can create just one class-frame that contains generic characteristics of

some object or concept, and then obtain several instance-frames without

encoding the class-level characteristics.

A hierarchical arrangement of a frame-based system can be viewed as a tree

that is turned over. The highest level of abstraction is represented at the top by

the root of the tree. Branches below the root illustrate lower levels of abstraction,

and leaves at the bottom appear as instance-frames. Each frame inherits

characteristics of all related frames at the higher levels.

Figure 5.5 shows a hierarchy of frames representing zero-emission (ZE)

vehicles. The root, ZE vehicle, has three branches: Electric vehicle, Solar vehicle

Figure 5.4 Three types of relationships among objects: (a) generalisation;

(b) aggregation; (c) association
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Figure 5.5 One-parent inheritance in the zero-emission vehicle structure
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and Muscle vehicle. Let us now follow just one branch, the Electric vehicle branch.

It is subdivided into Car, Motorcycle and Scooter. Then Car branches into Sedan,

Van and Truck, and finally, the leaf, the instance-frame Ford Ecostar, appears at

the bottom. The instance Ford Ecostar inherits all the characteristics of its parent

frame.

The instance Ford Ecostar indeed has only one parent, the class-frame Van.

Furthermore, in Figure 5.5, any frame except the root frame ZE vehicle has only

one parent. In this type of structure, each frame inherits knowledge from its

parent, grandparent, great-grandparent, etc.

Can a frame have more than one parent?

In many problems, it is quite natural to represent objects relating to different

worlds. For example, we may wish to create a class of muscle-solar-electric

vehicles. In such vehicles, people can pedal, while an electric drive system is used

to travel uphill, and solar panels assist in recharging batteries for the electric

system. Thus, the frame Muscle-Solar-Electric vehicle should combine specific

properties of three classes, Muscle vehicle, Solar vehicle and Electric vehicle. The

only requirement for multiple parent inheritance is that attributes of all parents

must be uniquely specified.

In frame-based systems, several classes can use the same attribute names.

However, when we use multiple inheritance, all parents must have unique

attribute names. If we want, for example to create a child class Muscle-Solar-

Electric vehicle related to parents Muscle vehicle, Solar vehicle and Electric vehicle, we

must get rid of such properties as Weight and Top speed in the parent classes. Only

then can we create the child class. In other words, to create multiple inheritance

we must reconsider an entire structure of our system, as can be seen in Figure 5.6.

In frame-based systems, inheritance means code reuse, and the job of the

knowledge engineer is to group similar classes together and reuse common code.

The most important advantage of inheritance is the conceptual simplification,

which is achieved by reducing the number of independent and specific features

in the expert system.

Are there any disadvantages?

As is so often the case, much of the appealing simplicity of ideas behind the

frame-based systems has been lost in the implementation stage. Brachman and

Levesque (1985) argue that if we allow unrestrained overwriting of inherited

properties, it may become impossible to represent either definitive statements

(such as ‘all squares are equilateral rectangles’) or contingent universal con-

ditions (such as ‘all the squares on Kasimir Malevich’s paintings are either black,

red or white’). In general, frame-based systems cannot distinguish between

essential properties (those that an instance must have in order to be considered

a member of a class) and accidental properties (those that all the instances of a

class just happen to have). Instances inherit all typical properties, and because

those properties can be overwritten anywhere in the frame hierarchy it may

become impossible to construct composite concepts when using multiple

inheritance.
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This appears to undermine the whole idea of the frame knowledge representa-

tion. However, frames offer us a powerful tool for combining declarative and

procedural knowledge, although they leave the knowledge engineer with dif-

ficult decisions to make about the hierarchical structure of the system and its

inheritance paths. Appeals to so-called ‘typical’ properties do not always work,

because they may lead us to unexpected results. Thus, although we may use

frames to represent the fact that an ostrich is a bird, it is certainly not a typical

bird, in the way that an eagle is. Frame-based expert systems, such as Level5

Object, provide no safeguards against creating incoherent structures. However,

Figure 5.6 Multiple inheritance
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such systems do provide data and control structures that are more suited for the

simulation of human reasoning than any conventional programming language.

Furthermore, to combine the power of both techniques of knowledge repres-

entation – rules and frames – modern frame-based expert systems use rules for

interaction with information contained in the frames.

5.4 Methods and demons

As we have already discussed, frames provide us with a structural and concise

means of organising knowledge. However, we expect an expert system to act as

an intelligent assistant – we require it not only to store the knowledge but also to

validate and manipulate this knowledge. To add actions to our frames, we need

methods and demons.

What are methods and demons?

A method is a procedure associated with a frame attribute that is executed

whenever requested (Durkin, 1994). In Level5 Object, for example, a method is

represented by a series of commands similar to a macro in a spreadsheet

program. We write a method for a specific attribute to determine the attribute’s

value or execute a series of actions when the attribute’s value changes.

Most frame-based expert systems use two types of methods: WHEN

CHANGED and WHEN NEEDED.

In general, a demon has an IF-THEN structure. It is executed whenever an

attribute in the demon’s IF statement changes its value. In this sense, demons

and methods are very similar, and the two terms are often used as synonyms.

However, methods are more appropriate if we need to write complex procedures.

Demons, on the other hand, are usually limited to IF-THEN statements.

Let us now examine a WHEN CHANGED method. A WHEN CHANGED

method is executed immediately when the value of its attribute changes. To

understand how WHEN CHANGED methods work, we consider a simple

problem adapted from Sterling and Shapiro (1994). We will use the expert

system shell Level5 Object, which offers features commonly found in most

frame-based expert systems and object-oriented programming languages.

The expert system is required to assist a loan officer in evaluating credit

requests from small business ventures. A credit request is to be classified into one

of three categories, ‘Give credit’, ‘Deny credit’ or ‘Consult a superior’, based on

the collateral and financial rating of the business, and the bank’s expected yield

from the loan. When a loan officer provides a qualitative rating of the expected

yield from the loan, the expert system compares the business collateral with the

amount of credit requested, evaluates a financial rating based on a weighted sum

of the business’s net worth to assets, last year’s sales growth, gross profit on sales

and short-term debt to sales, and finally determines a category for the credit

request.

The expert system is expected to provide details of any business venture and

evaluate the credit request for the business selected by the user (a loan officer).
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The input display for the request selection is shown in Figure 5.7. The data on

the display change depending on which business is selected.

The class Action Data, shown in Figure 5.8, is used to control the input display.

The user can move to the next, previous, first or last request in the list of requests

and examine the business data. The WHEN CHANGED methods here allow us to

advance through a list of requests. Note that all attributes in Figure 5.8 are

declared as simple [S]. Simple attributes can assume either a value of TRUE or

FALSE. Let us examine the WHEN CHANGED method attached to the attribute

Goto Next.

How does this method work?

In Level5 Object, any method begins with the reserved words WHEN CHANGED

or WHEN NEEDED, which are followed by the reserved word BEGIN and a series

of commands to be executed. The reserved word END completes a method. To

refer to a particular attribute in a method, we must specify the class name as well

as the attribute name. The syntax is:

<attribute name> OF <class name>

For example, the statement Goto Next OF Action Data refers to the attribute Goto

Next of the class Action Data.

The Next pushbutton on the input display is attached to the attribute Goto

Next of the class Action Data. When we select this pushbutton at run time, the

attribute Goto Next receives a value of TRUE, causing the WHEN CHANGED

method attached to it to execute. The method’s first command assigns the

Figure 5.7 Input display for the request selection
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number of the currently selected instance of the class Request to the attribute

Current Request Number, which is used as a reference point. The FIND command

uses the number stored in Current Request Number to determine the next request

in the list. The LIMIT 1 command tells Level5 Object to find the first instance

that matches the search condition. The WHERE clause

WHERE Request Number OF Request > Current Request Number

locates the first instance of the class Request whose number is greater than the

value of Current Request Number. The request list is maintained in increasing

order to ensure that the proper instance is retrieved. If, for example, the current

instance number is 6, then the FIND command will retrieve the instance with

the number 7.

Let us now consider the class Request and its instances represented in Figure

5.9. The instances, Request 1 and Request 2, have the same attributes as the class

Request, but each instance holds specific values for these attributes. To show the

attribute values on the input display, we have to create value-boxes (display

items that show data) and then attach these value-boxes to the appropriate

attributes. When we run the application, the value-boxes show the attribute

Figure 5.8 The class Action Data and WHEN CHANGED methods
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Figure 5.9 Class Request and its instances
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values of the currently selected instance of the class Request and WHEN

CHANGED methods cause actions to occur.

When are WHEN NEEDED methods to be used?

In many applications, an attribute is assigned to some initial or default value.

However, in some applications, a WHEN NEEDED method can be used to obtain

the attribute value only when it is needed. In other words, a WHEN NEEDED

method is executed when information associated with a particular attribute is

needed for solving the problem, but the attribute value is undetermined. We will

return to this method when we discuss rules for our credit evaluation example.

5.5 Interaction of frames and rules

Most frame-based expert systems allow us to use a set of rules to evaluate

information contained in frames.

Are there any specific differences between rules used in rule-based

expert systems and those used in frame-based systems?

Every rule has an IF-THEN structure, and every rule relates given information or

facts in its IF part to some action in its THEN part. In this sense, there are no

differences between rules used in a rule-based expert system and those used in a

frame-based system. However, in frame-based systems, rules often use pattern

matching clauses. These clauses contain variables that are used for finding

matching conditions among all instance-frames.

How does an inference engine work in a frame-based system? What

causes rules to fire?

Let us again compare rule-based and frame-based expert systems. In a rule-based

expert system, the inference engine links the rules contained in the knowledge

base with data given in the database. When the goal is set up – or in other words

when an expert system receives the instruction to determine a value for the

specified object – the inference engine searches the knowledge base to find a rule

that has the goal in its consequent (THEN part). If such a rule is found and its

antecedent (IF part) matches data in the database, the rule is fired and the

specified object, the goal, obtains its value. If no rules are found that can derive a

value for the goal, the system queries the user to supply that value.

In a frame-based system, the inference engine also searches for the goal, or in

other terms for the specified attribute, until its value is obtained.

In a rule-based expert system, the goal is defined for the rule base. In a frame-

based system, rules play an auxiliary role. Frames represent here a major source

of knowledge, and both methods and demons are used to add actions to the

frames. Thus, we might expect that the goal in a frame-based system can be

established either in a method or in a demon. Let us return to our credit

evaluation example.
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Suppose we want to evaluate the credit request selected by the user. The

expert system is expected to begin the evaluation when the user clicks the

Evaluate Credit pushbutton on the input display. This pushbutton is attached to

the attribute Evaluate Credit of the class Credit Evaluation shown in Figure 5.10.

The attribute Evaluate Credit has the WHEN CHANGED method attached to it,

and when we select the Evaluate Credit pushbutton at run time, the attribute

Evaluate Credit receives a new value, a value of TRUE. This change causes the

WHEN CHANGED method to execute. The PURSUE command tells Level5 Object

to establish the value of the attribute Evaluation of the class Credit Evaluation. A

simple set of rules shown in Figure 5.11 is used to determine the attribute’s value.

How does the inference engine work here?

Based on the goal, Evaluation OF Credit Evaluation, the inference engine finds

those rules whose consequents contain the goal of interest and examines them

one at a time in the order in which they appear in the rule base. That is,

the inference engine starts with RULE 9 and attempts to establish whether the

attribute Evaluation receives the Give credit value. This is done by examining

the validity of each antecedent of the rule. In other words, the inference engine

attempts to determine first whether the attribute Collateral has the value of

Excellent, and next whether the attribute Financial rating is Excellent. To deter-

mine whether Collateral OF Credit Evaluation is Excellent, the inference engine

examines RULE 1 and RULE 2, and to determine whether Financial rating OF

Credit Evaluation is Excellent, it looks at RULE 8. If all of the rule antecedents are

valid, then the inference engine will conclude that Evaluation OF Credit Evalua-

tion is Give credit. However, if any of the antecedents are invalid, then the

conclusion is invalid. In this case, the inference engine will examine the next

rule, RULE 10, which can establish a value for the attribute Evaluation.

Figure 5.10 The Credit Evaluation class, WHEN CHANGED and WHEN NEEDED methods

147INTERACTION OF FRAMES AND RULES



What happens if Collateral OF Credit Evaluation is Good?

Based on the set of rules provided for credit evaluation, the inference engine

cannot establish the value of the attribute Evaluation in some cases. This is

especially true when the collateral is good and the financial rating of the

business is excellent or good. In fact, if we have a look at Figure 5.10, we find

Figure 5.11 Rules for credit evaluation
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cases that are not represented in the rule base. However, it is not necessary

always to rely on a set of rules. We can use the WHEN NEEDED method to

establish the attribute value.

The WHEN NEEDED method shown in Figure 5.10 is attached to the attribute

Evaluation. The inference engine executes this method when it needs to

determine the value of Evaluation. When the WHEN NEEDED method is

executed, the attribute Evaluation receives the value Consult a superior.

How does the inference engine know where, and in what order, to obtain

the value of an attribute?

In our case, if the WHEN NEEDED method were executed first, the attribute

Evaluation would always receive the value Consult a superior, and no rules would

ever be fired. Thus, the inference engine has to obtain the value from the WHEN

NEEDED method only if it has not been determined from the rule base. In other

words, the search order for the attribute value has to be determined first. It can

be done, for example, by means of the SEARCH ORDER facet attached to an

attribute that tells the inference engine where, and in what order, to obtain the

value of this attribute.

In Level5 Object, a search order can be specified for every attribute, and in our

credit evaluation example, we set the search order for the Evaluation value to

RULES, WHEN NEEDED. It makes certain that the inference engine starts the

search from the rule base.

5.6 Buy Smart: a frame-based expert system

To illustrate the ideas discussed above, we consider a simple frame-based expert

system, Buy Smart, which advises property buyers.

We will review the main steps in developing frame-based systems, and show

how to use methods and demons to bring frames to life. To aid us in this effort

we will use the Level5 Object expert system shell.

Are there any differences between the main steps in building a rule-based

expert system and a frame-based one?

The basic steps are essentially the same. First, the knowledge engineer needs to

obtain a general understanding of the problem and the overall knowledge

structure. He or she then decides which expert system tool to use for developing

a prototype system. Then the knowledge engineer actually creates the knowledge

base and tests it by running a number of consultations. And finally, the expert

system is expanded, tested and revised until it does what the user wants it to do.

The principal difference between the design of a rule-based expert system and

a frame-based one lies in how the knowledge is viewed and represented in the

system.

In a rule-based system, a set of rules represents the domain knowledge useful

for problem solving. Each rule captures some heuristic of the problem, and each

new rule adds some new knowledge and thus makes the system smarter. The rule-

based system can easily be modified by changing, adding or subtracting rules.
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In a frame-based system, the problem is viewed in a different manner. Here,

the overall hierarchical structure of the knowledge is decided first. Classes and

their attributes are identified, and hierarchical relationships between frames are

established. The architecture of a frame-based system should not only provide a

natural description of the problem, but also allow us to add actions to the frames

through methods and demons.

The development of a frame-based system typically involves the following

steps:

1 Specify the problem and define the scope of the system.

2 Determine classes and their attributes.

3 Define instances.

4 Design displays.

5 Define WHEN CHANGED and WHEN NEEDED methods, and demons.

6 Define rules.

7 Evaluate and expand the system.

Step 1: Specify the problem and define the scope of the system

In our Buy Smart example, we start by collecting some information

about properties for sale in our region. We can identify relevant details

such as the property type, location, number of bedrooms and bath-

rooms, and of course, the property price. We also should provide a

short description and a nice photo for each property.

We expect that some of the properties will be sold and new proper-

ties will appear on the market. Thus, we need to build a database that

can be easily modified and then accessed from the expert system.

Level5 Object allows us to access, modify, delete and perform other

actions on data within a dBASE III database.

Can we store descriptions and pictures of the properties within a

database?

Property descriptions and pictures should be stored separately, descrip-

tions as text files (*.txt) and pictures as bit-map files (*.bmp). If we then

set up a display that includes a text-box and a picture-box, we will be

able to view a property description and its picture in this display by

reading the text file into the text-box and the bit-map file into the

picture-box, respectively.

Now we create an external database file, house.dbf, using dBASE III or

Microsoft Excel, as shown in Table 5.1.

The next step is to list all possible queries we might think of:

. What is the maximum amount you want to spend on a property?

. What type of property do you prefer?

. Which suburb would you like to live in?

. How many bedrooms do you want?

. How many bathrooms do you want?
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Once these queries are answered, the expert system is expected to

provide a list of suitable properties.

Step 2: Determine classes and their attributes

Here, we identify the problem’s principal classes. We begin with the

general or conceptual type of classes. For example, we can talk about

the concept of a property and describe general features that are

common to most properties. We can characterise each property by its

location, price, type, number of bedrooms and bathrooms, construc-

tion, picture and description. We also need to present contact details of

the property, such as its address or phone number. Thus, the class

Table 5.1 The property database house.dbf

Area Suburb Price Type Bedrooms

Central Suburbs New Town 164000 House 3

Central Suburbs Taroona 150000 House 3

Southern Suburbs Kingston 225000 Townhouse 4

Central Suburbs North Hobart 127000 House 3

Northern Suburbs West Moonah 89500 Unit 2

Central Suburbs Taroona 110000 House 3

Central Suburbs Lenah Valley 145000 House 3

Eastern Shore Old Beach 79500 Unit 2

Central Suburbs South Hobart 140000 House 3

Central Suburbs South Hobart 115000 House 3

Eastern Shore Cambridge 94500 Unit 2

Northern Suburbs Glenorchy 228000 Townhouse 4

. . . . .

. . . . .

. . . . .

Bathrooms Construction Phone Pictfile Textfile

1 Weatherboard (03) 6226 4212 house01.bmp house01.txt

1 Brick (03) 6226 1416 house02.bmp house02.txt

2 Brick (03) 6229 4200 house03.bmp house03.txt

1 Brick (03) 6226 8620 house04.bmp house04.txt

1 Weatherboard (03) 6225 4666 house05.bmp house05.txt

1 Brick (03) 6229 5316 house06.bmp house06.txt

1 Brick (03) 6278 2317 house07.bmp house07.txt

1 Brick (03) 6249 7298 house08.bmp house08.txt

1 Brick (03) 6228 5460 house09.bmp house09.txt

1 Brick (03) 6227 8937 house10.bmp house10.txt

1 Brick (03) 6248 1459 house11.bmp house11.txt

2 Weatherboard (03) 6271 6347 house12.bmp house12.txt

. . . . .

. . . . .

. . . . .
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Property can be presented as shown in Figure 5.12. Note that we added

the attribute Instance Number as well. This attribute does not character-

ise the property but will assist Level5 Object in accessing the external

database.

Step 3: Define instances

Once we determined the class-frame Property, we can easily create its

instances by using data stored in the dBASE III database. For most

frame-based expert systems like Level5 Object, this task requires us to

Figure 5.12 Class Property and its instances
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tell the system that we want a new instance to be created. For example,

to create a new instance of the class Property, we can use the following

code:

MAKE Property

WITH Area := area OF dB3 HOUSE 1

WITH Suburb := suburb OF dB3 HOUSE 1

WITH Price := price OF dB3 HOUSE 1

WITH Type := type OF dB3 HOUSE 1

WITH Bedrooms := bedrooms OF dB3 HOUSE 1

WITH Bathrooms := bathrooms OF dB3 HOUSE 1

WITH Construction := construct OF dB3 HOUSE 1

WITH Phone := phone OF dB3 HOUSE 1

WITH Pictfile := pictfile OF dB3 HOUSE 1

WITH Textfile := textfile OF dB3 HOUSE 1

WITH Instance Number := Current Instance Number

Here, the class dB3 HOUSE 1 is used to represent the structure of the

external database file house.dbf. Each row in the property database,

shown in Table 5.1, represents an instance of the class Property, and

each column represents an attribute. A newly created instance-frame

receives the values of the current record of the database. Figure 5.12

shows instances that are created from the external database. These

instances are linked to the class Property, and they inherit all attributes

of this class.

Step 4: Design displays

Once the principal classes and their attributes are determined, we can

design major displays for our application. We need the Application Title

Display to present some general information to the user at the begin-

ning of each application. This display may consist of the application

title, general description of the problem, representative graphics and

also copyright information. An example of the Application Title Display

is shown in Figure 5.13.

The next display we can think of is the Query Display. This display

should allow us to indicate our preferences by answering the queries

presented by the expert system. The Query Display may look like a

display shown in Figure 5.14. Here, the user is asked to select the most

important things he or she is looking for in the property. Based on

these selections, the expert system will then come up with a complete

list of suitable properties.

And finally, we should design the Property Information Display. This

display has to provide us with the list of suitable properties, an

opportunity to move to the next, previous, first or last property in the

list, and also a chance to look at the property picture and its descrip-

tion. Such a display may look like the one presented in Figure 5.15.

Note that the picture-box and text-box are included in the display.
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Figure 5.13 The Application Title Display

Figure 5.14 The Query Display
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How are these displays linked?

Level5 Object allows us to link these displays by attaching the Continue

pushbutton on the Application Title Display to the Query Display, and

the Search pushbutton on the Query Display to the Property Information

Display. When we run the application, clicking on either the Continue

or Search pushbutton will cause a new display to appear.

Now we have to bring these displays to life.

Step 5: Define WHEN CHANGED and WHEN NEEDED methods, and demons

At this point, we have already created the problem principal classes and

their attributes. We also determined the class instances, and established

the mechanism for creating these instances from the external database.

And finally, we designed static displays for presenting information to

the user. We must now develop a way to bring our application to life.

There are two ways to accomplish this task. The first one relies on WHEN

CHANGED and WHEN NEEDED methods, and demons. The second

approach involves pattern-matching rules. In frame-based systems, we

always first consider an application of methods and demons.

What we need now is to decide when to create instances of the class

Property. There are two possible solutions. The first one is to create all

instances at once when the user clicks on the Continue pushbutton on

the Application Title Display, and then remove inappropriate instances

step-by-step based on the user’s preferences when he or she selects

pushbuttons on the Query Display.

The second approach is to create only relevant instances after the

user has made all selections on the Query Display. This approach

Figure 5.15 The Property Information Display
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illuminates the necessity to remove inappropriate instances of the class

Property, but may add to the complexity of the system’s design.

In our design here, we give preference to the first approach. It will

provide us with an opportunity to use demons instead of rules.

However, you could use the other approach.

Let us now create an additional class, the class Action Data, shown in

Figure 5.16. The WHEN CHANGED method attached to the attribute

Load Properties allows us to create all instances of the class Property.

How do we make this method work?

To make it work, we attach the Continue pushbutton on the Application

Title Display to the attribute Load Properties. Now when we select this

pushbutton at run time, the attribute Load Properties receives a value of

TRUE, causing its WHEN CHANGED method to execute and create all

instances of the class Property. The number of the instances created

equals the number of records in the external database.

Now the Query Display appears (remember that we attach the

Continue pushbutton of the Application Title Display to the Query

Display), and the user is required to choose the most desirable features

of the property by selecting appropriate pushbuttons. Each pushbutton

here is associated with a demon that removes inappropriate instances

of the class Properties. A set of demons is shown in Figure 5.17.

How do demons work here?

A demon does not go into action until something happens. In our

application, it means that a demon is fired only if the user selects a

corresponding pushbutton.

Figure 5.16 The WHEN CHANGED method of the attribute Load Properties
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Let us consider, for example, DEMON 1 associated with the Central

Suburbs pushbutton. When the user clicks on the Central Suburbs

pushbutton on the Query Display, DEMON 1 is fired. The first command

of the demon consequent tells Level5 Object to find the class Property.

The WHERE clause,

WHERE Area OF Property <> ‘‘Central Suburbs’’

finds all instances of the class Property that do not match the user

selection. It looks for any instance where the value of the attribute

Figure 5.17 Demons for the Query Display
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Area is not equal to Central Suburbs. Then, the FORGET CURRENT

command removes the current instance of the class Property from the

application.

Once the property features are selected, the user clicks on the Search

pushbutton on the Query Display to obtain a list of properties with these

features. This list will appear on the Property Information Display (recall

that the Search pushbutton is attached to the Property Information

Display).

Can we view pictures and descriptions of the properties?

Let us first create two more attributes, Load Instance Number and Goto

First Property, for the class Action Data as shown in Figure 5.18. Let us

also attach the Search pushbutton on the Query Display to the attribute

Load Instance Number. Now when we click on the Search pushbutton at

run time, the attribute Load Instance Number will receive a value of

TRUE, causing its WHEN CHANGED method to execute. This method

determines the total number of instances left in the class Property. It

also assigns the attribute Goto First Property a value of TRUE, sub-

sequently causing its WHEN CHANGED method to execute.

The method attached to the attribute Goto First Property ensures that

we are always positioned at the first property when we enter the

Property Information Display. It also loads the value of the attribute

Pictfile into the display’s picture-box and the value of Textfile into the

text-box. As a result, we can see the property picture and its description

as shown in Figure 5.15.

Figure 5.18 The WHEN CHANGED methods of the attributes Load Instance Number and

Goto First Property

FRAME-BASED EXPERT SYSTEMS158



Step 6: Define rules

When we design a frame-based expert system, one of the most

important and difficult decisions is whether to use rules or manage

with methods and demons instead. This decision is usually based on

the personal preferences of the designer. In our application, we use

methods and demons because they offer us a powerful but simple way

of representing procedures. On the other hand, in the credit evaluation

example considered earlier, we applied a set of rules. In general,

however, rules are not effective at dealing with procedural knowledge.

Step 7: Evaluate and expand the system

We have now completed the initial design of our Buy Smart expert

system. The next task is to evaluate it. We want to make sure that

the system’s performance meets our expectations. In other words, we

want to run a test case.

1. To begin the test, we click on the Continue pushbutton on the

Application Title Display. The attribute Load Properties of the class

Action Data receives a value of TRUE. The WHEN CHANGED

method attached to Load Properties is executed, and all instances

of the class Property are created.

2. The Query Display appears, and we make our selections, for

example:

) Central Suburbs

DEMON 1
IF selected OF Central Suburbs pushbutton
THEN FIND Property

WHERE Area OF Property <> ‘‘Central Suburbs’’
WHEN FOUND

FORGET CURRENT Property
FIND END

) House

DEMON 5
IF selected OF House pushbutton
THEN FIND Property

WHERE Type OF Property <> ‘‘House’’
WHEN FOUND

FORGET CURRENT Property
FIND END

) Three bedrooms

DEMON 10
IF selected OF Three bedroom pushbutton
THEN FIND Property

WHERE Bedrooms OF Property <> 3
WHEN FOUND

FORGET CURRENT Property
FIND END
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) One bathroom

DEMON 12
IF selected OF One bathroom pushbutton
THEN FIND Property

WHERE Bathrooms OF Property <> 1
WHEN FOUND

FORGET CURRENT Property
FIND END

) $ 200,000

DEMON 18
IF selected OF $200,000 pushbutton
THEN FIND Property

WHERE Price OF Property > 200000
WHEN FOUND

FORGET CURRENT Property
FIND END

The demons remove those Property instances whose features do

not match our selections.

3. Now we click on the Search pushbutton. The attribute Load Instance

Number of the class Action Data receives a value of TRUE. The

WHEN CHANGED method attached to Load Instance Number is

executed. It determines the number of instances left in the class

Property, and also assigns the attribute Goto First Property a value

of TRUE. Now the WHEN CHANGED method attached to Goto

First Property is executed. It finds the first Property instance, and

assigns the attribute filename of the Property picturebox a value of

house01.bmp, and the attribute filename of the Property textbox a

value of house01.txt (recall that both the Property picturebox and

Property textbox have been created on the Property Information

Display).

4. The Property Information Display appears. In the example shown in

Figure 5.15, we can examine 12 properties that satisfy our require-

ments. Note that we are positioned at the first property in the

property list, the property picture appears in the picture-box and

the property description in the text-box. However, we cannot

move to the next, previous or last property in the property list by

using the pushbuttons assigned on the display. To make them

functional, we need to create additional attributes in the class

Action Data, and then attach WHEN CHANGED methods as shown

in Figure 5.19.

Now the Buy Smart expert system is ready for expansion, and we can

add new properties to the external database.
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5.7 Summary

In this chapter, we presented an overview of frame-based expert systems. We

considered the concept of a frame and discussed how to use frames for

knowledge representation. We found that inheritance is an essential feature of

the frame-based systems. We examined the application of methods, demons and

rules. Finally, we considered the development of a frame-based expert system

through an example.

Figure 5.19 The WHEN CHANGED methods of the attributes Goto Next Property, Goto

Previous Property and Goto Last Property
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The most important lessons learned in this chapter are:

. A frame is a data structure with typical knowledge about a particular object or

concept.

. Frames are used to represent knowledge in a frame-based expert system. A

frame contains knowledge of a given object, including its name and a set of

attributes also called slots. Name, weight, height and age are attributes of the

frame Person. Model, processor, memory and price are attributes of the frame

Computer.

. Attributes are used to store values. An attribute may contain a default value or

a pointer to another frame, set of rules or procedure by which the attribute

value is obtained.

. Frame-based systems can also extend the attribute-value structure through

the application of facets. Facets are used to establish the attribute value,

control end-user queries, and tell the inference engine how to process the

attribute.

. A frame may refer to a group of similar objects, or to a particular object. A

class-frame describes a group of objects with common attributes. Animal,

person, car and computer are all class-frames. An instance-frame describes a

particular object.

. Frame-based systems support class inheritance, i.e. the process by which

all characteristics of a class-frame are assumed by the instance-frame.

The fundamental idea of inheritance is that attributes of the class-frame

represent things that are typically true for all objects in the class, but slots

in the instance-frames are filled with actual data that is unique for each

instance.

. A frame can inherit attributes from more than one parent through multiple-

parent inheritance.

. Frames communicate with each other by methods and demons. A method is a

procedure associated with a frame attribute; it is executed whenever

requested. Most frame-based expert systems use two types of methods: WHEN

CHANGED and WHEN NEEDED. The WHEN CHANGED method is executed

when new information is placed in the slot, and the WHEN NEEDED method

is executed when information is needed for solving the problem but the slot

value is unspecified.

. Demons are similar to methods, and the terms are often used as synonyms.

However, methods are more appropriate if we need to write complex

procedures. Demons, on the other hand, are usually limited to IF-THEN

statements.

. In frame-based expert systems, rules often use pattern matching clauses.

These clauses contain variables that are used for locating matching conditions

among all instance-frames.
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. Although frames provide a powerful tool for combining declarative and

procedural knowledge, they leave the knowledge engineer with difficult

decisions about the hierarchical structure of the system and its inheritance

paths.

Questions for review

1 What is a frame? What are the class and instances? Give examples.

2 Design the class-frame for the object Student, determine its attributes and define

several instances for this class.

3 What is a facet? Give examples of various types of facets.

4 What is the correct level of decomposition of a problem into frames, slots and facets?

Justify your answer through an example.

5 How are objects related in frame-based systems? What are the ‘a-kind-of’ and ‘a-part-

of’ relationships? Give examples.

6 Define inheritance in frame-based systems. Why is inheritance an essential feature of

the frame-based systems?

7 Can a frame inherit attributes from more than one parent? Give an example.

8 What is a method? What are the most popular types of methods used in frame-based

expert systems?

9 What is a demon? What are the differences between demons and methods?

10 What are the differences, if any, between rules used in rule-based expert systems and

those used in frame-based systems?

11 What are the main steps in developing a frame-based expert system?

12 List some advantages of frame-based expert systems. What are the difficulties

involved in developing a frame-based expert system?
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6Artificial neural networks

In which we consider how our brains work and how to build and train

artificial neural networks.

6.1 Introduction, or how the brain works

‘The computer hasn’t proved anything yet,’ angry Garry Kasparov, the world

chess champion, said after his defeat in New York in May 1997. ‘If we were

playing a real competitive match, I would tear down Deep Blue into pieces.’

But Kasparov’s efforts to downplay the significance of his defeat in the six-

game match was futile. The fact that Kasparov – probably the greatest chess

player the world has seen – was beaten by a computer marked a turning point in

the quest for intelligent machines.

The IBM supercomputer called Deep Blue was capable of analysing 200

million positions a second, and it appeared to be displaying intelligent thoughts.

At one stage Kasparov even accused the machine of cheating!

‘There were many, many discoveries in this match, and one of them was

that sometimes the computer plays very, very human moves.

It deeply understands positional factors. And that is an outstanding

scientific achievement.’

Traditionally, it has been assumed that to beat an expert in a chess game, a

computer would have to formulate a strategy that goes beyond simply doing

a great number of ‘look-ahead’ moves per second. Chess-playing programs must

be able to improve their performance with experience or, in other words, a

machine must be capable of learning.

What is machine learning?

In general, machine learning involves adaptive mechanisms that enable com-

puters to learn from experience, learn by example and learn by analogy.

Learning capabilities can improve the performance of an intelligent system over

time. Machine learning mechanisms form the basis for adaptive systems. The

most popular approaches to machine learning are artificial neural networks

and genetic algorithms. This chapter is dedicated to neural networks.



What is a neural network?

A neural network can be defined as a model of reasoning based on the human

brain. The brain consists of a densely interconnected set of nerve cells, or basic

information-processing units, called neurons. The human brain incorporates

nearly 10 billion neurons and 60 trillion connections, synapses, between them

(Shepherd and Koch, 1990). By using multiple neurons simultaneously, the

brain can perform its functions much faster than the fastest computers in

existence today.

Although each neuron has a very simple structure, an army of such elements

constitutes a tremendous processing power. A neuron consists of a cell body,

soma, a number of fibres called dendrites, and a single long fibre called the

axon. While dendrites branch into a network around the soma, the axon

stretches out to the dendrites and somas of other neurons. Figure 6.1 is a

schematic drawing of a neural network.

Signals are propagated from one neuron to another by complex electro-

chemical reactions. Chemical substances released from the synapses cause a

change in the electrical potential of the cell body. When the potential reaches its

threshold, an electrical pulse, action potential, is sent down through the axon.

The pulse spreads out and eventually reaches synapses, causing them to increase

or decrease their potential. However, the most interesting finding is that a neural

network exhibits plasticity. In response to the stimulation pattern, neurons

demonstrate long-term changes in the strength of their connections. Neurons

also can form new connections with other neurons. Even entire collections of

neurons may sometimes migrate from one place to another. These mechanisms

form the basis for learning in the brain.

Our brain can be considered as a highly complex, nonlinear and parallel

information-processing system. Information is stored and processed in a neural

network simultaneously throughout the whole network, rather than at specific

locations. In other words, in neural networks, both data and its processing are

global rather than local.

Owing to the plasticity, connections between neurons leading to the ‘right

answer’ are strengthened while those leading to the ‘wrong answer’ weaken. As a

result, neural networks have the ability to learn through experience.

Learning is a fundamental and essential characteristic of biological neural

networks. The ease and naturalness with which they can learn led to attempts to

emulate a biological neural network in a computer.

Figure 6.1 Biological neural network
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Although a present-day artificial neural network (ANN) resembles the human

brain much as a paper plane resembles a supersonic jet, it is a big step forward.

ANNs are capable of ‘learning’, that is, they use experience to improve their

performance. When exposed to a sufficient number of samples, ANNs can

generalise to others they have not yet encountered. They can recognise hand-

written characters, identify words in human speech, and detect explosives

at airports. Moreover, ANNs can observe patterns that human experts fail

to recognise. For example, Chase Manhattan Bank used a neural network to

examine an array of information about the use of stolen credit cards – and

discovered that the most suspicious sales were for women’s shoes costing

between $40 and $80.

How do artificial neural nets model the brain?

An artificial neural network consists of a number of very simple and highly

interconnected processors, also called neurons, which are analogous to the

biological neurons in the brain. The neurons are connected by weighted links

passing signals from one neuron to another. Each neuron receives a number of

input signals through its connections; however, it never produces more than a

single output signal. The output signal is transmitted through the neuron’s

outgoing connection (corresponding to the biological axon). The outgoing

connection, in turn, splits into a number of branches that transmit the same

signal (the signal is not divided among these branches in any way). The outgoing

branches terminate at the incoming connections of other neurons in the

network. Figure 6.2 represents connections of a typical ANN, and Table 6.1

shows the analogy between biological and artificial neural networks (Medsker

and Liebowitz, 1994).

How does an artificial neural network ‘learn’?

The neurons are connected by links, and each link has a numerical weight

associated with it. Weights are the basic means of long-term memory in ANNs.

They express the strength, or in other words importance, of each neuron input.

A neural network ‘learns’ through repeated adjustments of these weights.

Figure 6.2 Architecture of a typical artificial neural network
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But does the neural network know how to adjust the weights?

As shown in Figure 6.2, a typical ANN is made up of a hierarchy of layers, and the

neurons in the networks are arranged along these layers. The neurons connected

to the external environment form input and output layers. The weights are

modified to bring the network input/output behaviour into line with that of the

environment.

Each neuron is an elementary information-processing unit. It has a means of

computing its activation level given the inputs and numerical weights.

To build an artificial neural network, we must decide first how many neurons

are to be used and how the neurons are to be connected to form a network. In

other words, we must first choose the network architecture. Then we decide

which learning algorithm to use. And finally we train the neural network, that is,

we initialise the weights of the network and update the weights from a set of

training examples.

Let us begin with a neuron, the basic building element of an ANN.

6.2 The neuron as a simple computing element

A neuron receives several signals from its input links, computes a new activation

level and sends it as an output signal through the output links. The input signal

can be raw data or outputs of other neurons. The output signal can be either a

final solution to the problem or an input to other neurons. Figure 6.3 shows

a typical neuron.

Figure 6.3 Diagram of a neuron

Table 6.1 Analogy between biological and artificial neural networks

Biological neural network Artificial neural network

Soma Neuron

Dendrite Input

Axon Output

Synapse Weight
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How does the neuron determine its output?

In 1943, Warren McCulloch and Walter Pitts proposed a very simple idea that is

still the basis for most artificial neural networks.

The neuron computes the weighted sum of the input signals and compares

the result with a threshold value, �. If the net input is less than the threshold, the

neuron output is �1. But if the net input is greater than or equal to the

threshold, the neuron becomes activated and its output attains a value þ1

(McCulloch and Pitts, 1943).

In other words, the neuron uses the following transfer or activation function:

X ¼
Xn

i¼1

xiwi ð6:1Þ

Y ¼ þ1 if X5 �

�1 if X < �

�

where X is the net weighted input to the neuron, xi is the value of input i, wi is

the weight of input i, n is the number of neuron inputs, and Y is the output

of the neuron.

This type of activation function is called a sign function.

Thus the actual output of the neuron with a sign activation function can be

represented as

Y ¼ sign
Xn

i¼1

xiwi � �

" #
ð6:2Þ

Is the sign function the only activation function used by neurons?

Many activation functions have been tested, but only a few have found practical

applications. Four common choices – the step, sign, linear and sigmoid functions –

are illustrated in Figure 6.4.

The step and sign activation functions, also called hard limit functions, are

often used in decision-making neurons for classification and pattern recognition

tasks.

Figure 6.4 Activation functions of a neuron
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The sigmoid function transforms the input, which can have any value

between plus and minus infinity, into a reasonable value in the range between

0 and 1. Neurons with this function are used in the back-propagation networks.

The linear activation function provides an output equal to the neuron

weighted input. Neurons with the linear function are often used for linear

approximation.

Can a single neuron learn a task?

In 1958, Frank Rosenblatt introduced a training algorithm that provided the first

procedure for training a simple ANN: a perceptron (Rosenblatt, 1958). The

perceptron is the simplest form of a neural network. It consists of a single neuron

with adjustable synaptic weights and a hard limiter. A single-layer two-input

perceptron is shown in Figure 6.5.

6.3 The perceptron

The operation of Rosenblatt’s perceptron is based on the McCulloch and Pitts

neuron model. The model consists of a linear combiner followed by a hard

limiter. The weighted sum of the inputs is applied to the hard limiter, which

produces an output equal to þ1 if its input is positive and �1 if it is negative. The

aim of the perceptron is to classify inputs, or in other words externally applied

stimuli x1; x2; . . . ; xn, into one of two classes, say A1 and A2. Thus, in the case of

an elementary perceptron, the n-dimensional space is divided by a hyperplane

into two decision regions. The hyperplane is defined by the linearly separable

function

Xn

i¼1

xiwi � � ¼ 0 ð6:3Þ

For the case of two inputs, x1 and x2, the decision boundary takes the form of

a straight line shown in bold in Figure 6.6(a). Point 1, which lies above the

boundary line, belongs to class A1; and point 2, which lies below the line,

belongs to class A2. The threshold � can be used to shift the decision boundary.

Figure 6.5 Single-layer two-input perceptron
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With three inputs the hyperplane can still be visualised. Figure 6.6(b) shows

three dimensions for the three-input perceptron. The separating plane here is

defined by the equation

x1w1 þ x2w2 þ x3w3 � � ¼ 0

But how does the perceptron learn its classification tasks?

This is done by making small adjustments in the weights to reduce the difference

between the actual and desired outputs of the perceptron. The initial weights are

randomly assigned, usually in the range ½�0:5; 0:5�, and then updated to obtain

the output consistent with the training examples. For a perceptron, the process

of weight updating is particularly simple. If at iteration p, the actual output is

YðpÞ and the desired output is YdðpÞ, then the error is given by

eðpÞ ¼ YdðpÞ � YðpÞ where p ¼ 1;2;3; . . . ð6:4Þ

Iteration p here refers to the pth training example presented to the perceptron.

If the error, eðpÞ, is positive, we need to increase perceptron output YðpÞ, but if

it is negative, we need to decrease YðpÞ. Taking into account that each

perceptron input contributes xiðpÞ � wiðpÞ to the total input XðpÞ, we find that

if input value xiðpÞ is positive, an increase in its weight wiðpÞ tends to increase

perceptron output YðpÞ, whereas if xiðpÞ is negative, an increase in wiðpÞ tends to

decrease YðpÞ. Thus, the following perceptron learning rule can be established:

wiðp þ 1Þ ¼ wiðpÞ þ �� xiðpÞ � eðpÞ; ð6:5Þ

where � is the learning rate, a positive constant less than unity.

The perceptron learning rule was first proposed by Rosenblatt in 1960

(Rosenblatt, 1960). Using this rule we can derive the perceptron training

algorithm for classification tasks.

Figure 6.6 Linear separability in the perceptrons: (a) two-input perceptron;

(b) three-input perceptron
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Step 1: Initialisation

Set initial weights w1;w2; . . . ;wn and threshold � to random numbers in

the range ½�0:5;0:5�.

Step 2: Activation

Activate the perceptron by applying inputs x1ðpÞ; x2ðpÞ; . . . ; xnðpÞ and

desired output YdðpÞ. Calculate the actual output at iteration p ¼ 1

YðpÞ ¼ step
Xn

i¼1

xiðpÞwiðpÞ � �

" #
; ð6:6Þ

where n is the number of the perceptron inputs, and step is a step

activation function.

Step 3: Weight training

Update the weights of the perceptron

wiðp þ 1Þ ¼ wiðpÞ þ�wiðpÞ; ð6:7Þ

where �wiðpÞ is the weight correction at iteration p.

The weight correction is computed by the delta rule:

�wiðpÞ ¼ �� xiðpÞ � eðpÞ ð6:8Þ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process

until convergence.

Can we train a perceptron to perform basic logical operations such as

AND, OR or Exclusive-OR?

The truth tables for the operations AND, OR and Exclusive-OR are shown in

Table 6.2. The table presents all possible combinations of values for two

variables, x1 and x2, and the results of the operations. The perceptron must be

trained to classify the input patterns.

Let us first consider the operation AND. After completing the initialisation

step, the perceptron is activated by the sequence of four input patterns

representing an epoch. The perceptron weights are updated after each activa-

tion. This process is repeated until all the weights converge to a uniform set of

values. The results are shown in Table 6.3.

Table 6.2 Truth tables for the basic logical operations

Input variables AND OR Exclusive-OR

x1 x2 x1 \ x2 x1 [ x2 x1 � x2

0 0 0 0 0

0 1 0 1 1

1 0 0 1 1

1 1 1 1 0
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In a similar manner, the perceptron can learn the operation OR. However, a

single-layer perceptron cannot be trained to perform the operation Exclusive-OR.

A little geometry can help us to understand why this is. Figure 6.7 represents

the AND, OR and Exclusive-OR functions as two-dimensional plots based on the

values of the two inputs. Points in the input space where the function output is 1

are indicated by black dots, and points where the output is 0 are indicated by

white dots.

Table 6.3 Example of perceptron learning: the logical operation AND

Inputs
Desired

output

Initial

weights
Actual

output Error

Final

weights

Epoch x1 x2 Yd w1 w2 Y e w1 w2

1 0 0 0 0.3 �0.1 0 0 0.3 �0.1

0 1 0 0.3 �0.1 0 0 0.3 �0.1

1 0 0 0.3 �0.1 1 �1 0.2 �0.1

1 1 1 0.2 �0.1 0 1 0.3 0.0

2 0 0 0 0.3 0.0 0 0 0.3 0.0

0 1 0 0.3 0.0 0 0 0.3 0.0

1 0 0 0.3 0.0 1 �1 0.2 0.0

1 1 1 0.2 0.0 1 0 0.2 0.0

3 0 0 0 0.2 0.0 0 0 0.2 0.0

0 1 0 0.2 0.0 0 0 0.2 0.0

1 0 0 0.2 0.0 1 �1 0.1 0.0

1 1 1 0.1 0.0 0 1 0.2 0.1

4 0 0 0 0.2 0.1 0 0 0.2 0.1

0 1 0 0.2 0.1 0 0 0.2 0.1

1 0 0 0.2 0.1 1 �1 0.1 0.1

1 1 1 0.1 0.1 1 0 0.1 0.1

5 0 0 0 0.1 0.1 0 0 0.1 0.1

0 1 0 0.1 0.1 0 0 0.1 0.1

1 0 0 0.1 0.1 0 0 0.1 0.1

1 1 1 0.1 0.1 1 0 0.1 0.1

Threshold: � ¼ 0:2; learning rate: � ¼ 0:1.

Figure 6.7 Two-dimensional plots of basic logical operations
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In Figures 6.7(a) and (b), we can draw a line so that black dots are on one side

and white dots on the other, but dots shown in Figure 6.7(c) are not separable by

a single line. A perceptron is able to represent a function only if there is some

line that separates all the black dots from all the white dots. Such functions are

called linearly separable. Therefore, a perceptron can learn the operations AND

and OR, but not Exclusive-OR.

But why can a perceptron learn only linearly separable functions?

The fact that a perceptron can learn only linearly separable functions directly

follows from Eq. (6.1). The perceptron output Y is 1 only if the total weighted

input X is greater than or equal to the threshold value �. This means that the

entire input space is divided in two along a boundary defined by X ¼ �. For

example, a separating line for the operation AND is defined by the equation

x1w1 þ x2w2 ¼ �

If we substitute values for weights w1 and w2 and threshold � given in Table 6.3,

we obtain one of the possible separating lines as

0:1x1 þ 0:1x2 ¼ 0:2

or

x1 þ x2 ¼ 2

Thus, the region below the boundary line, where the output is 0, is given by

x1 þ x2 � 2 < 0;

and the region above this line, where the output is 1, is given by

x1 þ x2 � 250

The fact that a perceptron can learn only linear separable functions is rather

bad news, because there are not many such functions.

Can we do better by using a sigmoidal or linear element in place of the

hard limiter?

Single-layer perceptrons make decisions in the same way, regardless of the activa-

tion function used by the perceptron (Shynk, 1990; Shynk and Bershad, 1992). It

means that a single-layer perceptron can classify only linearly separable patterns,

regardless of whether we use a hard-limit or soft-limit activation function.

The computational limitations of a perceptron were mathematically analysed

in Minsky and Papert’s famous book Perceptrons (Minsky and Papert, 1969). They

proved that Rosenblatt’s perceptron cannot make global generalisations on the

basis of examples learned locally. Moreover, Minsky and Papert concluded that

ARTIFICIAL NEURAL NETWORKS174



the limitations of a single-layer perceptron would also hold true for multilayer

neural networks. This conclusion certainly did not encourage further research on

artificial neural networks.

How do we cope with problems which are not linearly separable?

To cope with such problems we need multilayer neural networks. In fact, history

has proved that the limitations of Rosenblatt’s perceptron can be overcome by

advanced forms of neural networks, for example multilayer perceptrons trained

with the back-propagation algorithm.

6.4 Multilayer neural networks

A multilayer perceptron is a feedforward neural network with one or more

hidden layers. Typically, the network consists of an input layer of source

neurons, at least one middle or hidden layer of computational neurons, and

an output layer of computational neurons. The input signals are propagated in a

forward direction on a layer-by-layer basis. A multilayer perceptron with two

hidden layers is shown in Figure 6.8.

But why do we need a hidden layer?

Each layer in a multilayer neural network has its own specific function. The

input layer accepts input signals from the outside world and redistributes these

signals to all neurons in the hidden layer. Actually, the input layer rarely

includes computing neurons, and thus does not process input patterns. The

output layer accepts output signals, or in other words a stimulus pattern, from

the hidden layer and establishes the output pattern of the entire network.

Neurons in the hidden layer detect the features; the weights of the neurons

represent the features hidden in the input patterns. These features are then used

by the output layer in determining the output pattern.

With one hidden layer, we can represent any continuous function of the

input signals, and with two hidden layers even discontinuous functions can be

represented.

Figure 6.8 Multilayer perceptron with two hidden layers
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Why is a middle layer in a multilayer network called a ‘hidden’ layer?

What does this layer hide?

A hidden layer ‘hides’ its desired output. Neurons in the hidden layer cannot be

observed through the input/output behaviour of the network. There is no obvious

way to know what the desired output of the hidden layer should be. In other

words, the desired output of the hidden layer is determined by the layer itself.

Can a neural network include more than two hidden layers?

Commercial ANNs incorporate three and sometimes four layers, including one

or two hidden layers. Each layer can contain from 10 to 1000 neurons.

Experimental neural networks may have five or even six layers, including three

or four hidden layers, and utilise millions of neurons, but most practical

applications use only three layers, because each additional layer increases the

computational burden exponentially.

How do multilayer neural networks learn?

More than a hundred different learning algorithms are available, but the

most popular method is back-propagation. This method was first proposed in

1969 (Bryson and Ho, 1969), but was ignored because of its demanding com-

putations. Only in the mid-1980s was the back-propagation learning algorithm

rediscovered.

Learning in a multilayer network proceeds the same way as for a perceptron. A

training set of input patterns is presented to the network. The network computes

its output pattern, and if there is an error – or in other words a difference

between actual and desired output patterns – the weights are adjusted to reduce

this error.

In a perceptron, there is only one weight for each input and only one output.

But in the multilayer network, there are many weights, each of which contrib-

utes to more than one output.

How can we assess the blame for an error and divide it among the

contributing weights?

In a back-propagation neural network, the learning algorithm has two phases.

First, a training input pattern is presented to the network input layer. The

network then propagates the input pattern from layer to layer until the output

pattern is generated by the output layer. If this pattern is different from the

desired output, an error is calculated and then propagated backwards through

the network from the output layer to the input layer. The weights are modified

as the error is propagated.

As with any other neural network, a back-propagation one is determined by

the connections between neurons (the network’s architecture), the activation

function used by the neurons, and the learning algorithm (or the learning law)

that specifies the procedure for adjusting weights.

Typically, a back-propagation network is a multilayer network that has three

or four layers. The layers are fully connected, that is, every neuron in each layer

is connected to every other neuron in the adjacent forward layer.
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A neuron determines its output in a manner similar to Rosenblatt’s percep-

tron. First, it computes the net weighted input as before:

X ¼
Xn

i¼1

xiwi � �;

where n is the number of inputs, and � is the threshold applied to the neuron.

Next, this input value is passed through the activation function. However,

unlike a percepron, neurons in the back-propagation network use a sigmoid

activation function:

Ysigmoid ¼ 1

1 þ e�X
ð6:9Þ

The derivative of this function is easy to compute. It also guarantees that the

neuron output is bounded between 0 and 1.

What about the learning law used in the back-propagation networks?

To derive the back-propagation learning law, let us consider the three-layer

network shown in Figure 6.9. The indices i, j and k here refer to neurons in the

input, hidden and output layers, respectively.

Input signals, x1; x2; . . . ; xn, are propagated through the network from left to

right, and error signals, e1; e2; . . . ; el, from right to left. The symbol wij denotes the

weight for the connection between neuron i in the input layer and neuron j in

the hidden layer, and the symbol wjk the weight between neuron j in the hidden

layer and neuron k in the output layer.

Figure 6.9 Three-layer back-propagation neural network
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To propagate error signals, we start at the output layer and work backward to

the hidden layer. The error signal at the output of neuron k at iteration p is

defined by

ekðpÞ ¼ yd;kðpÞ � ykðpÞ; ð6:10Þ

where yd;kðpÞ is the desired output of neuron k at iteration p.

Neuron k, which is located in the output layer, is supplied with a desired

output of its own. Hence, we may use a straightforward procedure to update

weight wjk. In fact, the rule for updating weights at the output layer is similar to

the perceptron learning rule of Eq. (6.7):

wjkðp þ 1Þ ¼ wjkðpÞ þ�wjkðpÞ; ð6:11Þ

where �wjkðpÞ is the weight correction.

When we determined the weight correction for the perceptron, we used input

signal xi. But in the multilayer network, the inputs of neurons in the output layer

are different from the inputs of neurons in the input layer.

As we cannot apply input signal xi , what should we use instead?

We use the output of neuron j in the hidden layer, yj, instead of input xi. The

weight correction in the multilayer network is computed by (Fu, 1994):

�wjkðpÞ ¼ �� yjðpÞ � �kðpÞ; ð6:12Þ

where �kðpÞ is the error gradient at neuron k in the output layer at iteration p.

What is the error gradient?

The error gradient is determined as the derivative of the activation function

multiplied by the error at the neuron output.

Thus, for neuron k in the output layer, we have

�kðpÞ ¼ @ykðpÞ
@XkðpÞ � ekðpÞ; ð6:13Þ

where ykðpÞ is the output of neuron k at iteration p, and XkðpÞ is the net weighted

input to neuron k at the same iteration.

For a sigmoid activation function, Eq. (6.13) can be represented as

�kðpÞ ¼
@

(
1

1 þ exp½�XkðpÞ�

)

@XkðpÞ
� ekðpÞ ¼

exp½�XkðpÞ�
f1 þ exp½�XkðpÞ�g2

� ekðpÞ

Thus, we obtain:
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�kðpÞ ¼ ykðpÞ � ½1 � ykðpÞ� � ekðpÞ; ð6:14Þ

where

ykðpÞ ¼ 1

1 þ exp½�XkðpÞ�
:

How can we determine the weight correction for a neuron in the hidden

layer?

To calculate the weight correction for the hidden layer, we can apply the same

equation as for the output layer:

�wijðpÞ ¼ �� xiðpÞ � �jðpÞ; ð6:15Þ

where �jðpÞ represents the error gradient at neuron j in the hidden layer:

�jðpÞ ¼ yjðpÞ � ½1 � yjðpÞ� �
Xl

k¼1

�kðpÞwjkðpÞ;

where l is the number of neurons in the output layer;

yjðpÞ ¼ 1

1 þ e�Xjð pÞ ;

XjðpÞ ¼
Xn

i¼1

xiðpÞ � wijðpÞ � �j;

and n is the number of neurons in the input layer.

Now we can derive the back-propagation training algorithm.

Step 1: Initialisation

Set all the weights and threshold levels of the network to random

numbers uniformly distributed inside a small range (Haykin, 1999):

� 2:4

Fi
;þ2:4

Fi

� �
;

where Fi is the total number of inputs of neuron i in the network. The

weight initialisation is done on a neuron-by-neuron basis.

Step 2: Activation

Activate the back-propagation neural network by applying inputs

x1ðpÞ; x2ðpÞ; . . . ; xnðpÞ and desired outputs yd;1ðpÞ; yd;2ðpÞ; . . . ; yd;nðpÞ.

(a) Calculate the actual outputs of the neurons in the hidden layer:

yjðpÞ ¼ sigmoid
Xn

i¼1

xiðpÞ � wijðpÞ � �j

" #
;

where n is the number of inputs of neuron j in the hidden layer,

and sigmoid is the sigmoid activation function.
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(b) Calculate the actual outputs of the neurons in the output layer:

ykðpÞ ¼ sigmoid
Xm
j¼1

xjkðpÞ � wjkðpÞ � �k

2
4

3
5;

where m is the number of inputs of neuron k in the output layer.

Step 3: Weight training

Update the weights in the back-propagation network propagating

backward the errors associated with output neurons.

(a) Calculate the error gradient for the neurons in the output layer:

�kðpÞ ¼ ykðpÞ � ½1 � ykðpÞ� � ekðpÞ

where

ekðpÞ ¼ yd;kðpÞ � ykðpÞ

Calculate the weight corrections:

�wjkðpÞ ¼ �� yjðpÞ � �kðpÞ

Update the weights at the output neurons:

wjkðp þ 1Þ ¼ wjkðpÞ þ�wjkðpÞ

(b) Calculate the error gradient for the neurons in the hidden layer:

�jðpÞ ¼ yjðpÞ � ½1 � yjðpÞ� �
Xl

k¼1

�kðpÞ � wjkðpÞ

Calculate the weight corrections:

�wijðpÞ ¼ �� xiðpÞ � �jðpÞ

Update the weights at the hidden neurons:

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and repeat the process

until the selected error criterion is satisfied.

As an example, we may consider the three-layer back-propagation network

shown in Figure 6.10. Suppose that the network is required to perform logical

operation Exclusive-OR. Recall that a single-layer perceptron could not do

this operation. Now we will apply the three-layer net.

Neurons 1 and 2 in the input layer accept inputs x1 and x2, respectively, and

redistribute these inputs to the neurons in the hidden layer without any

processing:

x13 ¼ x14 ¼ x1 and x23 ¼ x24 ¼ x2.

ARTIFICIAL NEURAL NETWORKS180



The effect of the threshold applied to a neuron in the hidden or output layer

is represented by its weight, �, connected to a fixed input equal to �1.

The initial weights and threshold levels are set randomly as follows:

w13 ¼ 0:5, w14 ¼ 0:9, w23 ¼ 0:4, w24 ¼ 1:0, w35 ¼ �1:2, w45 ¼ 1:1,

�3 ¼ 0:8, �4 ¼ �0:1 and �5 ¼ 0:3.

Consider a training set where inputs x1 and x2 are equal to 1 and desired

output yd;5 is 0. The actual outputs of neurons 3 and 4 in the hidden layer are

calculated as

y3 ¼ sigmoid ðx1w13 þ x2w23 � �3Þ ¼ 1=½1 þ e�ð1�0:5þ1�0:4�1�0:8Þ� ¼ 0:5250

y4 ¼ sigmoid ðx1w14 þ x2w24 � �4Þ ¼ 1=½1 þ e�ð1�0:9þ1�1:0þ1�0:1Þ� ¼ 0:8808

Now the actual output of neuron 5 in the output layer is determined as

y5 ¼ sigmoid ðy3w35 þ y4w45 � �5Þ ¼ 1=½1þ e�ð�0:5250�1:2þ0:8808�1:1�1�0:3Þ� ¼ 0:5097

Thus, the following error is obtained:

e ¼ yd;5 � y5 ¼ 0 � 0:5097 ¼ �0:5097

The next step is weight training. To update the weights and threshold levels

in our network, we propagate the error, e, from the output layer backward to the

input layer.

First, we calculate the error gradient for neuron 5 in the output layer:

�5 ¼ y5ð1 � y5Þe ¼ 0:5097 � ð1 � 0:5097Þ � ð�0:5097Þ ¼ �0:1274

Figure 6.10 Three-layer network for solving the Exclusive-OR operation
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Then we determine the weight corrections assuming that the learning rate

parameter, �, is equal to 0.1:

�w35 ¼ �� y3 � �5 ¼ 0:1 � 0:5250 � ð�0:1274Þ ¼ �0:0067

�w45 ¼ �� y4 � �5 ¼ 0:1 � 0:8808 � ð�0:1274Þ ¼ �0:0112

��5 ¼ �� ð�1Þ � �5 ¼ 0:1 � ð�1Þ � ð�0:1274Þ ¼ 0:0127

Next we calculate the error gradients for neurons 3 and 4 in the hidden layer:

�3 ¼ y3ð1�y3Þ� �5 �w35 ¼ 0:5250�ð1�0:5250Þ� ð�0:1274Þ� ð�1:2Þ ¼ 0:0381

�4 ¼ y4ð1�y4Þ� �5 �w45 ¼ 0:8808�ð1�0:8808Þ� ð�0:1274Þ�1:1¼�0:0147

We then determine the weight corrections:

�w13 ¼ �� x1 � �3 ¼ 0:1 � 1 � 0:0381 ¼ 0:0038

�w23 ¼ �� x2 � �3 ¼ 0:1 � 1 � 0:0381 ¼ 0:0038

��3 ¼ �� ð�1Þ � �3 ¼ 0:1 � ð�1Þ � 0:0381 ¼ �0:0038

�w14 ¼ �� x1 � �4 ¼ 0:1 � 1 � ð�0:0147Þ ¼ �0:0015

�w24 ¼ �� x2 � �4 ¼ 0:1 � 1 � ð�0:0147Þ ¼ �0:0015

��4 ¼ �� ð�1Þ � �4 ¼ 0:1 � ð�1Þ � ð�0:0147Þ ¼ 0:0015

At last, we update all weights and threshold levels in our network:

w13 ¼ w13 þ�w13 ¼ 0:5 þ 0:0038 ¼ 0:5038

w14 ¼ w14 þ�w14 ¼ 0:9 � 0:0015 ¼ 0:8985

w23 ¼ w23 þ�w23 ¼ 0:4 þ 0:0038 ¼ 0:4038

w24 ¼ w24 þ�w24 ¼ 1:0 � 0:0015 ¼ 0:9985

w35 ¼ w35 þ�w35 ¼ �1:2 � 0:0067 ¼ �1:2067

w45 ¼ w45 þ�w45 ¼ 1:1 � 0:0112 ¼ 1:0888

�3 ¼ �3 þ��3 ¼ 0:8 � 0:0038 ¼ 0:7962

�4 ¼ �4 þ��4 ¼ �0:1 þ 0:0015 ¼ �0:0985

�5 ¼ �5 þ��5 ¼ 0:3 þ 0:0127 ¼ 0:3127

The training process is repeated until the sum of squared errors is less than

0.001.

Why do we need to sum the squared errors?

The sum of the squared errors is a useful indicator of the network’s performance.

The back-propagation training algorithm attempts to minimise this criterion.

When the value of the sum of squared errors in an entire pass through all
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training sets, or epoch, is sufficiently small, a network is considered to have

converged. In our example, the sufficiently small sum of squared errors is

defined as less than 0.001. Figure 6.11 represents a learning curve: the sum of

squared errors plotted versus the number of epochs used in training. The

learning curve shows how fast a network is learning.

It took 224 epochs or 896 iterations to train our network to perform the

Exclusive-OR operation. The following set of final weights and threshold levels

satisfied the chosen error criterion:

w13 ¼ 4:7621, w14 ¼ 6:3917, w23 ¼ 4:7618, w24 ¼ 6:3917, w35 ¼ �10:3788,

w45 ¼ 9:7691, �3 ¼ 7:3061, �4 ¼ 2:8441 and �5 ¼ 4:5589.

The network has solved the problem! We may now test our network by

presenting all training sets and calculating the network’s output. The results are

shown in Table 6.4.

Figure 6.11 Learning curve for operation Exclusive-OR

Table 6.4 Final results of three-layer network learning: the logical operation Exclusive-OR

Inputs
Desired

output

Actual

output Error

Sum of

squared

x1 x2 yd y5 e errors

1 1 0 0.0155 �0.0155 0.0010

0 1 1 0.9849 0.0151

1 0 1 0.9849 0.0151

0 0 0 0.0175 �0.0175
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The initial weights and thresholds are set randomly. Does this mean that

the same network may find different solutions?

The network obtains different weights and threshold values when it starts from

different initial conditions. However, we will always solve the problem, although

using a different number of iterations. For instance, when the network was

trained again, we obtained the following solution:

w13 ¼ �6:3041, w14 ¼ �5:7896, w23 ¼ 6:2288, w24 ¼ 6:0088, w35 ¼ 9:6657,

w45 ¼ �9:4242, �3 ¼ 3:3858, �4 ¼ �2:8976 and �5 ¼ �4:4859.

Can we now draw decision boundaries constructed by the multilayer

network for operation Exclusive-OR?

It may be rather difficult to draw decision boundaries constructed by neurons

with a sigmoid activation function. However, we can represent each neuron in

the hidden and output layers by a McCulloch and Pitts model, using a sign

function. The network in Figure 6.12 is also trained to perform the Exclusive-OR

operation (Touretzky and Pomerlean, 1989; Haykin, 1999).

The positions of the decision boundaries constructed by neurons 3 and 4 in

the hidden layer are shown in Figure 6.13(a) and (b), respectively. Neuron 5

in the output layer performs a linear combination of the decision boundaries

formed by the two hidden neurons, as shown in Figure 6.13(c). The network in

Figure 6.12 does indeed separate black and white dots and thus solves the

Exclusive-OR problem.

Is back-propagation learning a good method for machine learning?

Although widely used, back-propagation learning is not immune from problems.

For example, the back-propagation learning algorithm does not seem to function

in the biological world (Stork, 1989). Biological neurons do not work backward

to adjust the strengths of their interconnections, synapses, and thus back-

propagation learning cannot be viewed as a process that emulates brain-like

learning.

Figure 6.12 Network represented by McCulloch–Pitts model for solving the Exclusive-OR

operation.
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Another apparent problem is that the calculations are extensive and, as a

result, training is slow. In fact, a pure back-propagation algorithm is rarely used

in practical applications.

There are several possible ways to improve the computational efficiency of the

back-propagation algorithm (Caudill, 1991; Jacobs, 1988; Stubbs, 1990). Some of

them are discussed below.

6.5 Accelerated learning in multilayer neural networks

A multilayer network, in general, learns much faster when the sigmoidal

activation function is represented by a hyperbolic tangent,

Ytan h ¼ 2a

1 þ e�bX
� a; ð6:16Þ

where a and b are constants.

Suitable values for a and b are: a ¼ 1:716 and b ¼ 0:667 (Guyon, 1991).

We also can accelerate training by including a momentum term in the delta

rule of Eq. (6.12) (Rumelhart et al., 1986):

�wjkðpÞ ¼ 	 ��wjkðp � 1Þ þ �� yjðpÞ � �kðpÞ; ð6:17Þ

where 	 is a positive number ð04	 < 1Þ called the momentum constant.

Typically, the momentum constant is set to 0.95.

Equation (6.17) is called the generalised delta rule. In a special case, when

	 ¼ 0, we obtain the delta rule of Eq. (6.12).

Why do we need the momentum constant?

According to the observations made in Watrous (1987) and Jacobs (1988), the

inclusion of momentum in the back-propagation algorithm has a stabilising

effect on training. In other words, the inclusion of momentum tends to

Figure 6.13 (a) Decision boundary constructed by hidden neuron 3 of the network in

Figure 6.12; (b) decision boundary constructed by hidden neuron 4; (c) decision

boundaries constructed by the complete three-layer network
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accelerate descent in the steady downhill direction, and to slow down the

process when the learning surface exhibits peaks and valleys.

Figure 6.14 represents learning with momentum for operation Exclusive-OR.

A comparison with a pure back-propagation algorithm shows that we reduced

the number of epochs from 224 to 126.

In the delta and generalised delta rules, we use a constant and rather

small value for the learning rate parameter, a. Can we increase this value

to speed up training?

One of the most effective means to accelerate the convergence of back-

propagation learning is to adjust the learning rate parameter during training.

The small learning rate parameter, �, causes small changes to the weights in the

network from one iteration to the next, and thus leads to the smooth learning

curve. On the other hand, if the learning rate parameter, �, is made larger to

speed up the training process, the resulting larger changes in the weights may

cause instability and, as a result, the network may become oscillatory.

To accelerate the convergence and yet avoid the danger of instability, we can

apply two heuristics (Jacobs, 1988):

. Heuristic 1. If the change of the sum of squared errors has the same algebraic

sign for several consequent epochs, then the learning rate parameter, �,

should be increased.

. Heuristic 2. If the algebraic sign of the change of the sum of squared errors

alternates for several consequent epochs, then the learning rate parameter, �,

should be decreased.

Figure 6.14 Learning with momentum
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Adapting the learning rate requires some changes in the back-propagation

algorithm. First, the network outputs and errors are calculated from the initial

learning rate parameter. If the sum of squared errors at the current epoch exceeds

the previous value by more than a predefined ratio (typically 1.04), the learning

rate parameter is decreased (typically by multiplying by 0.7) and new weights

and thresholds are calculated. However, if the error is less than the previous one,

the learning rate is increased (typically by multiplying by 1.05).

Figure 6.15 represents an example of back-propagation training with adaptive

learning rate. It demonstrates that adapting the learning rate can indeed

decrease the number of iterations.

Learning rate adaptation can be used together with learning with momen-

tum. Figure 6.16 shows the benefits of applying simultaneously both techniques.

The use of momentum and adaptive learning rate significantly improves the

performance of a multilayer back-propagation neural network and minimises

the chance that the network can become oscillatory.

Neural networks were designed on an analogy with the brain. The brain’s

memory, however, works by association. For example, we can recognise a

familiar face even in an unfamiliar environment within 100–200 ms. We can

also recall a complete sensory experience, including sounds and scenes, when we

hear only a few bars of music. The brain routinely associates one thing with

another.

Figure 6.15 Learning with adaptive learning rate
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Can a neural network simulate associative characteristics of the human

memory?

Multilayer neural networks trained with the back-propagation algorithm are

used for pattern recognition problems. But, as we noted, such networks are not

intrinsically intelligent. To emulate the human memory’s associative character-

istics we need a different type of network: a recurrent neural network.

6.6 The Hopfield network

A recurrent neural network has feedback loops from its outputs to its inputs. The

presence of such loops has a profound impact on the learning capability of the

network.

How does the recurrent network learn?

After applying a new input, the network output is calculated and fed back to

adjust the input. Then the output is calculated again, and the process is repeated

until the output becomes constant.

Does the output always become constant?

Successive iterations do not always produce smaller and smaller output changes,

but on the contrary may lead to chaotic behaviour. In such a case, the network

output never becomes constant, and the network is said to be unstable.

The stability of recurrent networks intrigued several researchers in the 1960s

and 1970s. However, none was able to predict which network would be stable,

Figure 6.16 Learning with momentum and adaptive learning rate
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and some researchers were pessimistic about finding a solution at all. The problem

was solved only in 1982, when John Hopfield formulated the physical principle of

storing information in a dynamically stable network (Hopfield, 1982).

Figure 6.17 shows a single-layer Hopfield network consisting of n neurons.

The output of each neuron is fed back to the inputs of all other neurons (there is

no self-feedback in the Hopfield network).

The Hopfield network usually uses McCulloch and Pitts neurons with the sign

activation function as its computing element.

How does this function work here?

It works in a similar way to the sign function represented in Figure 6.4. If the

neuron’s weighted input is less than zero, the output is �1; if the input is greater

than zero, the output is þ1. However, if the neuron’s weighted input is exactly

zero, its output remains unchanged – in other words, a neuron remains in its

previous state, regardless of whether it is þ1 or �1.

Ysign ¼
þ1; if X > 0

�1; if X < 0

Y; if X ¼ 0

8><
>:

ð6:18Þ

The sign activation function may be replaced with a saturated linear

function, which acts as a pure linear function within the region ½�1; 1� and as

a sign function outside this region. The saturated linear function is shown in

Figure 6.18.

The current state of the network is determined by the current outputs of all

neurons, y1; y2; . . . ; yn. Thus, for a single-layer n-neuron network, the state can be

defined by the state vector as

Y ¼

y1

y2

..

.

yn

2
66664

3
77775

ð6:19Þ

Figure 6.17 Single-layer n-neuron Hopfield network
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In the Hopfield network, synaptic weights between neurons are usually

represented in matrix form as follows:

W ¼
XM
m¼1

YmYT
m � MI; ð6:20Þ

where M is the number of states to be memorised by the network, Ym is the

n-dimensional binary vector, I is n � n identity matrix, and superscript T denotes

a matrix transposition.

An operation of the Hopfield network can be represented geometrically.

Figure 6.19 shows a three-neuron network represented as a cube in the three-

dimensional space. In general, a network with n neurons has 2n possible states

and is associated with an n-dimensional hypercube. In Figure 6.19, each state is

represented by a vertex. When a new input vector is applied, the network moves

from one state-vertex to another until it becomes stable.

Figure 6.18 The saturated linear activation function

Figure 6.19 Cube representation of the possible states for the three-neuron Hopfield

network
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What determines a stable state-vertex?

The stable state-vertex is determined by the weight matrix W, the current input

vector X, and the threshold matrix �. If the input vector is partially incorrect or

incomplete, the initial state will converge into the stable state-vertex after a few

iterations.

Suppose, for instance, that our network is required to memorise two opposite

states, ð1;1;1Þ and ð�1;�1;�1Þ. Thus,

Y1 ¼
1

1

1

2
64

3
75 and Y2 ¼

�1

�1

�1

2
64

3
75;

where Y1 and Y2 are the three-dimensional vectors.

We also can represent these vectors in the row, or transposed, form

YT
1 ¼ 1 1 1½ � and YT

2 ¼ �1 �1 �1½ �

The 3 � 3 identity matrix I is

I ¼
1 0 0

0 1 0

0 0 1

2
64

3
75

Thus, we can now determine the weight matrix as follows:

W ¼ Y1YT
1 þ Y2YT

2 � 2I

or

W ¼
1

1

1

2
64

3
75 1 1 1½ � þ

�1

�1

�1

2
64

3
75 �1 �1 �1½ � � 2

1 0 0

0 1 0

0 0 1

2
64

3
75 ¼

0 2 2

2 0 2

2 2 0

2
64

3
75

Next, the network is tested by the sequence of input vectors, X1 and X2,

which are equal to the output (or target) vectors Y1 and Y2, respectively. We

want to see whether our network is capable of recognising familiar patterns.

How is the Hopfield network tested?

First, we activate it by applying the input vector X. Then, we calculate the

actual output vector Y, and finally, we compare the result with the initial input

vector X.

Ym ¼ sign ðW Xm � hÞ; m ¼ 1;2; . . . ;M ð6:21Þ

where h is the threshold matrix.
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In our example, we may assume all thresholds to be zero. Thus,

Y1 ¼ sign

0 2 2

2 0 2

2 2 0

2
64

3
75

1

1

1

2
64

3
75�

0

0

0

2
64

3
75

8><
>:

9>=
>;

¼
1

1

1

2
64

3
75

and

Y2 ¼ sign

0 2 2

2 0 2

2 2 0

2
64

3
75

�1

�1

�1

2
64

3
75�

0

0

0

2
64

3
75

8><
>:

9>=
>;

¼
�1

�1

�1

2
64

3
75

As we see, Y1 ¼ X1 and Y2 ¼ X2. Thus, both states, ð1;1;1Þ and ð�1;�1;�1Þ, are

said to be stable.

How about other states?

With three neurons in the network, there are eight possible states. The remain-

ing six states are all unstable. However, stable states (also called fundamental

memories) are capable of attracting states that are close to them. As shown in

Table 6.5, the fundamental memory ð1;1; 1Þ attracts unstable states ð�1;1;1Þ,
ð1;�1;1Þ and ð1;1;�1Þ. Each of these unstable states represents a single

error, compared to the fundamental memory ð1;1;1Þ. On the other hand, the

Table 6.5 Operation of the three-neuron Hopfield network

Possible
Inputs Outputs

Fundamental

state Iteration x1 x2 x3 y1 y2 y3 memory

1 1 1 0 1 1 1 1 1 1 1 1 1

�1 1 1 0 �1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 �1 1 0 1 �1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 �1 0 1 1 �1 1 1 1

1 1 1 1 1 1 1 1 1 1

�1 �1 �1 0 �1 �1 �1 �1 �1 �1 �1 �1 �1

�1 �1 1 0 �1 �1 1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

�1 1 �1 0 �1 1 �1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

1 �1 �1 0 1 �1 �1 �1 �1 �1

1 �1 �1 �1 �1 �1 �1 �1 �1 �1

ARTIFICIAL NEURAL NETWORKS192



fundamental memory ð�1;�1;�1Þ attracts unstable states ð�1;�1;1Þ, ð�1;1;�1Þ
and ð1;�1;�1Þ. Here again, each of the unstable states represents a single error,

compared to the fundamental memory. Thus, the Hopfield network can indeed

act as an error correction network. Let us now summarise the Hopfield network

training algorithm.

Step 1: Storage

The n-neuron Hopfield network is required to store a set of M funda-

mental memories, Y1;Y2; . . . ;YM . The synaptic weight from neuron i to

neuron j is calculated as

wij ¼
XM
m¼1

ym;i ym;j; i 6¼ j

0; i ¼ j

8><
>:

; ð6:22Þ

where ym;i and ym;j are the ith and the jth elements of the fundamental

memory Ym, respectively. In matrix form, the synaptic weights

between neurons are represented as

W ¼
XM
m¼1

YmYT
m � MI

The Hopfield network can store a set of fundamental memories if the

weight matrix is symmetrical, with zeros in its main diagonal (Cohen

and Grossberg, 1983). That is,

W ¼

0 w12 � � � w1i � � � w1n

w21 0 � � � w2i � � � w2n

..

. ..
. ..

. ..
.

wi1 wi2 � � � 0 � � � win

..

. ..
. ..

. ..
.

wn1 wn2 � � � wni � � � 0

2
66666666664

3
77777777775

; ð6:23Þ

where wij ¼ wji.

Once the weights are calculated, they remain fixed.

Step 2: Testing

We need to confirm that the Hopfield network is capable of recalling all

fundamental memories. In other words, the network must recall any

fundamental memory Ym when presented with it as an input. That is,

xm;i ¼ ym;i; i ¼ 1;2; . . . ;n; m ¼ 1;2; . . . ;M

ym;i ¼ sign
Xn

j¼1

wij xm;j � �i

0
@

1
A;
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where ym;i is the ith element of the actual output vector Ym, and xm;j is

the jth element of the input vector Xm. In matrix form,

Xm ¼ Ym; m ¼ 1; 2; . . . ;M

Ym ¼ sign ðWXm � hÞ

If all fundamental memories are recalled perfectly we may proceed to

the next step.

Step 3: Retrieval

Present an unknown n-dimensional vector (probe), X, to the network

and retrieve a stable state. Typically, the probe represents a corrupted or

incomplete version of the fundamental memory, that is,

X 6¼ Ym; m ¼ 1;2; . . . ;M

(a) Initialise the retrieval algorithm of the Hopfield network by setting

xjð0Þ ¼ xj j ¼ 1;2; . . . ; n

and calculate the initial state for each neuron

yið0Þ ¼ sign
Xn

j¼1

wij xjð0Þ � �i

0
@

1
A; i ¼ 1;2; . . . ;n

where xjð0Þ is the jth element of the probe vector X at iteration

p ¼ 0, and yið0Þ is the state of neuron i at iteration p ¼ 0.

In matrix form, the state vector at iteration p ¼ 0 is presented as

Yð0Þ ¼ sign ½WXð0Þ � h �

(b) Update the elements of the state vector, YðpÞ, according to the

following rule:

yiðp þ 1Þ ¼ sign
Xn

j¼1

wij xjðpÞ � �i

0
@

1
A

Neurons for updating are selected asynchronously, that is,

randomly and one at a time.

Repeat the iteration until the state vector becomes unchanged,

or in other words, a stable state is achieved. The condition for

stability can be defined as:

yiðp þ 1Þ ¼ sign
Xn

j¼1

wij yjðpÞ � �i

0
@

1
A; i ¼ 1;2; . . . ;n ð6:24Þ

or, in matrix form,

Yðp þ 1Þ ¼ sign ½WYðpÞ � h � ð6:25Þ
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The Hopfield network will always converge to a stable state if the retrieval is

done asynchronously (Haykin, 1999). However, this stable state does not

necessarily represent one of the fundamental memories, and if it is a funda-

mental memory it is not necessarily the closest one.

Suppose, for example, we wish to store three fundamental memories in the

five-neuron Hopfield network:

X1 ¼ ðþ1;þ1;þ1;þ1;þ1Þ
X2 ¼ ðþ1;�1;þ1;�1;þ1Þ
X3 ¼ ð�1;þ1;�1;þ1;�1Þ

The weight matrix is constructed from Eq. (6.20),

W ¼

0 �1 3 �1 3

�1 0 �1 3 �1

3 �1 0 �1 3

�1 3 �1 0 �1

3 �1 3 �1 0

2
6666664

3
7777775

Assume now that the probe vector is represented by

X ¼ ðþ1;þ1;�1;þ1;þ1Þ

If we compare this probe with the fundamental memory X1, we find that these

two vectors differ only in a single bit. Thus, we may expect that the probe X will

converge to the fundamental memory X1. However, when we apply the Hopfield

network training algorithm described above, we obtain a different result. The

pattern produced by the network recalls the memory X3, a false memory.

This example reveals one of the problems inherent to the Hopfield network.

Another problem is the storage capacity, or the largest number of funda-

mental memories that can be stored and retrieved correctly. Hopfield showed

experimentally (Hopfield, 1982) that the maximum number of fundamental

memories Mmax that can be stored in the n-neuron recurrent network is

limited by

Mmax ¼ 0:15n ð6:26Þ

We also may define the storage capacity of a Hopfield network on the basis

that most of the fundamental memories are to be retrieved perfectly (Amit,

1989):

Mmax ¼ n

2 ln n
ð6:27Þ
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What if we want all the fundamental memories to be retrieved perfectly?

It can be shown that to retrieve all the fundamental memories perfectly, their

number must be halved (Amit, 1989):

Mmax ¼ n

4 ln n
ð6:28Þ

As we can see now, the storage capacity of a Hopfield network has to be kept

rather small for the fundamental memories to be retrievable. This is a major

limitation of the Hopfield network.

Strictly speaking, a Hopfield network represents an auto-associative type of

memory. In other words, a Hopfield network can retrieve a corrupted or

incomplete memory but cannot associate it with another different memory.

In contrast, human memory is essentially associative. One thing may remind

us of another, and that of another, and so on. We use a chain of mental

associations to recover a lost memory. If we, for example, forget where we left an

umbrella, we try to recall where we last had it, what we were doing, and who we

were talking to. Thus, we attempt to establish a chain of associations, and

thereby to restore a lost memory.

Why can’t a Hopfield network do this job?

The Hopfield network is a single-layer network, and thus the output pattern

appears on the same set of neurons to which the input pattern was applied. To

associate one memory with another, we need a recurrent neural network capable

of accepting an input pattern on one set of neurons and producing a related, but

different, output pattern on another set of neurons. In fact, we need a two-layer

recurrent network, the bidirectional associative memory.

6.7 Bidirectional associative memory

Bidirectional associative memory (BAM), first proposed by Bart Kosko, is a

heteroassociative network (Kosko, 1987, 1988). It associates patterns from one

set, set A, to patterns from another set, set B, and vice versa. Like a Hopfield

network, the BAM can generalise and also produce correct outputs despite

corrupted or incomplete inputs. The basic BAM architecture is shown in Figure

6.20. It consists of two fully connected layers: an input layer and an output layer.

How does the BAM work?

The input vector XðpÞ is applied to the transpose of weight matrix WT to

produce an output vector YðpÞ, as illustrated in Figure 6.20(a). Then, the output

vector YðpÞ is applied to the weight matrix W to produce a new input vector

Xðp þ 1Þ, as in Figure 6.20(b). This process is repeated until input and output

vectors become unchanged, or in other words, the BAM reaches a stable state.

The basic idea behind the BAM is to store pattern pairs so that when

n-dimensional vector X from set A is presented as input, the BAM recalls
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m-dimensional vector Y from set B, but when Y is presented as input, the BAM

recalls X.

To develop the BAM, we need to create a correlation matrix for each pattern

pair we want to store. The correlation matrix is the matrix product of the input

vector X, and the transpose of the output vector YT . The BAM weight matrix is

the sum of all correlation matrices, that is,

W ¼
XM
m¼1

Xm YT
m; ð6:29Þ

where M is the number of pattern pairs to be stored in the BAM.

Like a Hopfield network, the BAM usually uses McCulloch and Pitts neurons

with the sign activation function.

The BAM training algorithm can be presented as follows.

Step 1: Storage

The BAM is required to store M pairs of patterns. For example, we may

wish to store four pairs:

Set A: X1 ¼

1

1

1

1

1

1

2
666666664

3
777777775

X2 ¼

�1

�1

�1

�1

�1

�1

2
666666664

3
777777775

X3 ¼

1

1

�1

�1

1

1

2
666666664

3
777777775

X4 ¼

�1

�1

1

1

�1

�1

2
666666664

3
777777775

Set B: Y1 ¼
1

1

1

2
64

3
75 Y2 ¼

�1

�1

�1

2
64

3
75 Y3 ¼

1

�1

1

2
64

3
75 Y4 ¼

�1

1

�1

2
64

3
75

Figure 6.20 BAM operation: (a) forward direction; (b) backward direction
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In this case, the BAM input layer must have six neurons and the output

layer three neurons.

The weight matrix is determined as

W ¼
X4

m¼1

Xm YT
m

or

W ¼

1

1

1

1

1

1

2
666666664

3
777777775

1 1 1½ � þ

�1

�1

�1

�1

�1

�1

2
666666664

3
777777775

�1 �1 �1½ � þ

1

1

�1

�1

1

1

2
666666664

3
777777775

1 �1 1½ �

þ

�1

�1

1

1

�1

�1

2
666666664

3
777777775

�1 1 �1½ � ¼

4 0 4

4 0 4

0 4 0

0 4 0

4 0 4

4 0 4

2
666666664

3
777777775

Step 2: Testing

The BAM should be able to receive any vector from set A and retrieve

the associated vector from set B, and receive any vector from set B and

retrieve the associated vector from set A. Thus, first we need to confirm

that the BAM is able to recall Ym when presented with Xm. That is,

Ym ¼ sign ðWT XmÞ; m ¼ 1;2; . . . ;M ð6:30Þ

For instance,

Y1 ¼ sign ðWT X1Þ ¼ sign

4 4 0 0 4 4

0 0 4 4 0 0

4 4 0 0 4 4

2
64

3
75

1

1

1

1

1

1

2
666666664

3
777777775

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼
1

1

1

2
64

3
75

Then, we confirm that the BAM recalls Xm when presented with Ym.

That is,

Xm ¼ sign ðW YmÞ; m ¼ 1;2; . . . ;M ð6:31Þ
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For instance,

X3 ¼ sign ðW Y3Þ ¼ sign

4 0 4

4 0 4

0 4 0

0 4 0

4 0 4

4 0 4

2
666666664

3
777777775

1

�1

1

2
64

3
75

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

1

1

�1

�1

1

1

2
666666664

3
777777775

In our example, all four pairs are recalled perfectly, and we can proceed

to the next step.

Step 3: Retrieval

Present an unknown vector (probe) X to the BAM and retrieve a

stored association. The probe may present a corrupted or incomplete

version of a pattern from set A (or from set B) stored in the BAM.

That is,

X 6¼ Xm; m ¼ 1;2; . . . ;M

(a) Initialise the BAM retrieval algorithm by setting

Xð0Þ ¼ X; p ¼ 0

and calculate the BAM output at iteration p

YðpÞ ¼ sign ½WT XðpÞ�

(b) Update the input vector XðpÞ:

Xðp þ 1Þ ¼ sign ½W YðpÞ�

and repeat the iteration until equilibrium, when input and output

vectors remain unchanged with further iterations. The input and

output patterns will then represent an associated pair.

The BAM is unconditionally stable (Kosko, 1992). This means that

any set of associations can be learned without risk of instability. This

important quality arises from the BAM using the transpose relationship

between weight matrices in forward and backward directions.

Let us now return to our example. Suppose we use vector X as a probe. It

represents a single error compared with the pattern X1 from set A:

X ¼ ð�1;þ1;þ1;þ1;þ1;þ1Þ

This probe applied as the BAM input produces the output vector Y1 from set B.

The vector Y1 is then used as input to retrieve the vector X1 from set A. Thus, the

BAM is indeed capable of error correction.
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There is also a close relationship between the BAM and the Hopfield network.

If the BAM weight matrix is square and symmetrical, then W ¼ WT . In this case,

input and output layers are of the same size, and the BAM can be reduced to the

autoassociative Hopfield network. Thus, the Hopfield network can be considered

as a BAM special case.

The constraints imposed on the storage capacity of the Hopfield network can

also be extended to the BAM. In general, the maximum number of associations

to be stored in the BAM should not exceed the number of neurons in the smaller

layer. Another, even more serious problem, is incorrect convergence. The BAM

may not always produce the closest association. In fact, a stable association may

be only slightly related to the initial input vector.

The BAM still remains the subject of intensive research. However, despite all

its current problems and limitations, the BAM promises to become one of the

most useful artificial neural networks.

Can a neural network learn without a ‘teacher’?

The main property of a neural network is an ability to learn from its environ-

ment, and to improve its performance through learning. So far we have

considered supervised or active learning – learning with an external ‘teacher’

or a supervisor who presents a training set to the network. But another type of

learning also exists: unsupervised learning.

In contrast to supervised learning, unsupervised or self-organised learning

does not require an external teacher. During the training session, the neural

network receives a number of different input patterns, discovers significant

features in these patterns and learns how to classify input data into appropriate

categories. Unsupervised learning tends to follow the neuro-biological organisa-

tion of the brain.

Unsupervised learning algorithms aim to learn rapidly. In fact, self-organising

neural networks learn much faster than back-propagation networks, and thus

can be used in real time.

6.8 Self-organising neural networks

Self-organising neural networks are effective in dealing with unexpected and

changing conditions. In this section, we consider Hebbian and competitive

learning, which are based on self-organising networks.

6.8.1 Hebbian learning

In 1949, neuropsychologist Donald Hebb proposed one of the key ideas in

biological learning, commonly known as Hebb’s Law (Hebb, 1949). Hebb’s Law

states that if neuron i is near enough to excite neuron j and repeatedly

participates in its activation, the synaptic connection between these two

neurons is strengthened and neuron j becomes more sensitive to stimuli from

neuron i.
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We can represent Hebb’s Law in the form of two rules as follows (Stent, 1973):

1. If two neurons on either side of a connection are activated synchronously,

then the weight of that connection is increased.

2. If two neurons on either side of a connection are activated asynchronously,

then the weight of that connection is decreased.

Hebb’s Law provides the basis for learning without a teacher. Learning here is

a local phenomenon occurring without feedback from the environment. Figure

6.21 shows Hebbian learning in a neural network.

Using Hebb’s Law we can express the adjustment applied to the weight wij at

iteration p in the following form:

�wijðpÞ ¼ F½yjðpÞ; xiðpÞ�; ð6:32Þ

where F½yjðpÞ; xiðpÞ� is a function of both postsynaptic and presynaptic activities.

As a special case, we can represent Hebb’s Law as follows (Haykin, 1999):

�wijðpÞ ¼ � yjðpÞ xiðpÞ; ð6:33Þ

where � is the learning rate parameter.

This equation is referred to as the activity product rule. It shows how a

change in the weight of the synaptic connection between a pair of neurons is

related to a product of the incoming and outgoing signals.

Hebbian learning implies that weights can only increase. In other words,

Hebb’s Law allows the strength of a connection to increase, but it does not

provide a means to decrease the strength. Thus, repeated application of the input

signal may drive the weight wij into saturation. To resolve this problem, we

might impose a limit on the growth of synaptic weights. It can be done by

introducing a non-linear forgetting factor into Hebb’s Law in Eq. (6.33) as

follows (Kohonen, 1989):

�wijðpÞ ¼ � yjðpÞ xiðpÞ � � yjðpÞwijðpÞ ð6:34Þ

where � is the forgetting factor.

Figure 6.21 Hebbian learning in a neural network
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What does a forgetting factor mean?

Forgetting factor � specifies the weight decay in a single learning cycle. It usually

falls in the interval between 0 and 1. If the forgetting factor is 0, the neural

network is capable only of strengthening its synaptic weights, and as a result,

these weights grow towards infinity. On the other hand, if the forgetting factor is

close to 1, the network remembers very little of what it learns. Therefore, a rather

small forgetting factor should be chosen, typically between 0.01 and 0.1, to

allow only a little ‘forgetting’ while limiting the weight growth.

Equation (6.34) may also be written in the form referred to as a generalised

activity product rule

�wijðpÞ ¼ � yjðpÞ½� xiðpÞ � wijðpÞ�; ð6:35Þ

where � ¼ �=�.

The generalised activity product rule implies that, if the presynaptic activity

(input of neuron i) at iteration p, xiðpÞ, is less than wijðpÞ=�, then the modified

synaptic weight at iteration ðp þ 1Þ, wijðp þ 1Þ, will decrease by an amount

proportional to the postsynaptic activity (output of neuron j) at iteration

p, yjðpÞ. On the other hand, if xiðpÞ is greater than wijðpÞ=�, then the modified

synaptic weight at iteration ðp þ 1Þ, wijðp þ 1Þ, will increase also in proportion to

the output of neuron j, yjðpÞ. In other words, we can determine the activity

balance point for modifying the synaptic weight as a variable equal to wijðpÞ=�.

This approach solves the problem of an infinite increase of the synaptic weights.

Let us now derive the generalised Hebbian learning algorithm.

Step 1: Initialisation

Set initial synaptic weights and thresholds to small random values, say

in an interval ½0;1�. Also assign small positive values to the learning rate

parameter � and forgetting factor �.

Step 2: Activation

Compute the neuron output at iteration p

yjðpÞ ¼
Xn

i¼1

xiðpÞwijðpÞ � �j;

where n is the number of neuron inputs, and �j is the threshold value of

neuron j.

Step 3: Learning

Update the weights in the network:

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ;

where �wijðpÞ is the weight correction at iteration p.

The weight correction is determined by the generalised activity

product rule:

�wijðpÞ ¼ � yjðpÞ½� xiðpÞ � wijðpÞ�
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Step 4: Iteration

Increase iteration p by one, go back to Step 2 and continue until the

synaptic weights reach their steady-state values.

To illustrate Hebbian learning, consider a fully connected feedforward

network with a single layer of five computation neurons, as shown in Figure

6.22(a). Each neuron is represented by a McCulloch and Pitts model with the

sign activation function. The network is trained with the generalised activity

product rule on the following set of input vectors:

X1 ¼

0

0

0

0

0

2
6666664

3
7777775

X2 ¼

0

1

0

0

1

2
6666664

3
7777775

X3 ¼

0

0

0

1

0

2
6666664

3
7777775

X4 ¼

0

0

1

0

0

2
6666664

3
7777775

X5 ¼

0

1

0

0

1

2
6666664

3
7777775

Figure 6.22 Unsupervised Hebbian learning in a single-layer network: (a) initial and final

states of the network; (b) initial and final weight matrices
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Here, the input vector X1 is the null vector. As you may also notice, input signals

x4 (in the vector X3) and x3 (in the vector X4) are the only unity components in

the corresponding vectors, while unity signals x2 and x5 always come together, as

seen in the vectors X2 and X5.

In our example, the initial weight matrix is represented by the 5 � 5 identity

matrix I. Thus, in the initial state, each of the neurons in the input layer is

connected to the neuron in the same position in the output layer with a synaptic

weight of 1, and to the other neurons with weights of 0. The thresholds are set to

random numbers in the interval between 0 and 1. The learning rate parameter �

and forgetting factor � are taken as 0.1 and 0.02, respectively.

After training, as can be seen from Figure 6.22(b), the weight matrix becomes

different from the initial identity matrix I. The weights between neuron 2 in the

input layer and neuron 5 in the output layer, and neuron 5 in the input layer and

neuron 2 in the output layer have increased from 0 to 2.0204. Our network has

learned new associations. At the same time, the weight between neuron 1 in the

input layer and neuron 1 in the output layer has become 0. The network has

forgotten this association.

Let us now test our network. A test input vector, or probe, is defined as

X ¼

1

0

0

0

1

2
6666664

3
7777775

When this probe is presented to the network, we obtain

Y ¼ sign ðW X � h Þ

Y ¼ sign

0 0 0 0 0

0 2:0204 0 0 2:0204

0 0 1:0200 0 0

0 0 0 0:9996 0

0 2:0204 0 0 2:0204

2
6666664

3
7777775

1

0

0

0

1

2
6666664

3
7777775
�

0:4940

0:2661

0:0907

0:9478

0:0737

2
6666664

3
7777775

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0

1

0

0

1

2
6666664

3
7777775

Sure enough, the network has associated input x5 with outputs y2 and y5 because

inputs x2 and x5 were coupled during training. But the network cannot associate

input x1 with output y1 any more because unity input x1 did not appear during

training and our network has lost the ability to recognise it.

Thus, a neural network really can learn to associate stimuli commonly

presented together, and most important, the network can learn without a

‘teacher’.
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6.8.2 Competitive learning

Another popular type of unsupervised learning is competitive learning. In

competitive learning, neurons compete among themselves to be activated. While

in Hebbian learning, several output neurons can be activated simultaneously, in

competitive learning only a single output neuron is active at any time. The

output neuron that wins the ‘competition’ is called the winner-takes-all neuron.

The basic idea of competitive learning was introduced in the early 1970s

(Grossberg, 1972; von der Malsburg, 1973; Fukushima, 1975). However,

competitive learning did not attract much interest until the late 1980s, when

Teuvo Kohonen introduced a special class of artificial neural networks called

self-organising feature maps (Kohonen, 1989). These maps are based on

competitive learning.

What is a self-organising feature map?

Our brain is dominated by the cerebral cortex, a very complex structure of

billions of neurons and hundreds of billions of synapses. The cortex is neither

uniform nor homogeneous. It includes areas, identified by the thickness of their

layers and the types of neurons within them, that are responsible for different

human activities (motor, visual, auditory, somatosensory, etc.), and thus associ-

ated with different sensory inputs. We can say that each sensory input is mapped

into a corresponding area of the cerebral cortex; in other words, the cortex is a

self-organising computational map in the human brain.

Can we model the self-organising map?

Kohonen formulated the principle of topographic map formation (Kohonen,

1990). This principle states that the spatial location of an output neuron in

the topographic map corresponds to a particular feature of the input pattern.

Kohonen also proposed the feature-mapping model shown in Figure 6.23

(Kohonen, 1982). This model captures the main features of self-organising maps

in the brain and yet can be easily represented in a computer.

Figure 6.23 Feature-mapping Kohonen model
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The Kohonen model provides a topological mapping, placing a fixed number

of input patterns from the input layer into a higher-dimensional output or

Kohonen layer. In Figure 6.23, the Kohonen layer consists of a two-dimensional

lattice made up of 4-by-4 neurons, with each neuron having two inputs. The

winning neuron is shown in black and its neighbours in grey. Here, the winner’s

neighbours are neurons in close physical proximity to the winner.

How close is ‘close physical proximity’?

How close physical proximity is, is determined by the network designer. The

winner’s neighbourhood may include neurons within one, two or even three

positions on either side. For example, Figure 6.23 depicts the winner’s neigh-

bourhood of size one. Generally, training in the Kohonen network begins with

the winner’s neighbourhood of a fairly large size. Then, as training proceeds, the

neighbourhood size gradually decreases.

The Kohonen network consists of a single layer of computation neurons, but

it has two different types of connections. There are forward connections from

the neurons in the input layer to the neurons in the output layer, and also

lateral connections between neurons in the output layer, as shown in

Figure 6.24. The lateral connections are used to create a competition between

neurons. The neuron with the largest activation level among all neurons in the

output layer becomes the winner (the winner-takes-all neuron). This neuron is

the only neuron that produces an output signal. The activity of all other neurons

is suppressed in the competition.

When an input pattern is presented to the network, each neuron in the

Kohonen layer receives a full copy of the input pattern, modified by its path

through the weights of the synaptic connections between the input layer and

the Kohonen layer. The lateral feedback connections produce excitatory or

inhibitory effects, depending on the distance from the winning neuron. This is

achieved by the use of a Mexican hat function which describes synaptic weights

between neurons in the Kohonen layer.

What is the Mexican hat function?

The Mexican hat function shown in Figure 6.25 represents the relationship

between the distance from the winner-takes-all neuron and the strength of the

Figure 6.24 Architecture of the Kohonen network
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connections within the Kohonen layer. According to this function, the near

neighbourhood (a short-range lateral excitation area) has a strong excitatory

effect, remote neighbourhood (an inhibitory penumbra) has a mild inhibit-

ory effect and very remote neighbourhood (an area surrounding the inhibitory

penumbra) has a weak excitatory effect, which is usually neglected.

In the Kohonen network, a neuron learns by shifting its weights from inactive

connections to active ones. Only the winning neuron and its neighbourhood are

allowed to learn. If a neuron does not respond to a given input pattern, then

learning cannot occur in that particular neuron.

The output signal, yj, of the winner-takes-all neuron j is set equal to one

and the output signals of all the other neurons (the neurons that lose the

competition) are set to zero.

The standard competitive learning rule (Haykin, 1999) defines the change

�wij applied to synaptic weight wij as

�wij ¼
�ðxi � wijÞ; if neuron j wins the competition

0; if neuron j loses the competition

�
ð6:36Þ

where xi is the input signal and � is the learning rate parameter. The learning

rate parameter lies in the range between 0 and 1.

The overall effect of the competitive learning rule resides in moving the

synaptic weight vector Wj of the winning neuron j towards the input pattern X.

The matching criterion is equivalent to the minimum Euclidean distance

between vectors.

What is the Euclidean distance?

The Euclidean distance between a pair of n-by-1 vectors X and Wj is defined by

d ¼ kX � Wjk ¼
Xn

i¼1

ðxi � wijÞ2

" #1=2

; ð6:37Þ

where xi and wij are the ith elements of the vectors X and Wj, respectively.

Figure 6.25 The Mexican hat function of lateral connection
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The similarity between the vectors X and Wj is determined as the reciprocal of

the Euclidean distance d. In Figure 6.26, the Euclidean distance between the

vectors X and Wj is presented as the length of the line joining the tips of

those vectors. Figure 6.26 clearly demonstrates that the smaller the Euclidean

distance is, the greater will be the similarity between the vectors X and Wj.

To identify the winning neuron, jX, that best matches the input vector X, we

may apply the following condition (Haykin, 1999):

jX ¼ min
j

kX � Wjk; j ¼ 1;2; . . . ;m ð6:38Þ

where m is the number of neurons in the Kohonen layer.

Suppose, for instance, that the two-dimensional input vector X is presented to

the three-neuron Kohonen network,

X ¼
0:52

0:12

� �

The initial weight vectors, Wj, are given by

W1 ¼
0:27

0:81

� �
W2 ¼

0:42

0:70

� �
W3 ¼

0:43

0:21

� �

We find the winning (best-matching) neuron jX using the minimum-distance

Euclidean criterion:

d1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � w11Þ2 þ ðx2 � w21Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:52 � 0:27Þ2 þ ð0:12 � 0:81Þ2

q
¼ 0:73

d2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � w12Þ2 þ ðx2 � w22Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:52 � 0:42Þ2 þ ð0:12 � 0:70Þ2

q
¼ 0:59

d3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � w13Þ2 þ ðx2 � w23Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:52 � 0:43Þ2 þ ð0:12 � 0:21Þ2

q
¼ 0:13

Thus, neuron 3 is the winner and its weight vector W3 is to be updated

according to the competitive learning rule described in Eq. (6.36). Assuming that

the learning rate parameter � is equal to 0.1, we obtain

�w13 ¼ �ðx1 � w13Þ ¼ 0:1ð0:52 � 0:43Þ ¼ 0:01

�w23 ¼ �ðx2 � w23Þ ¼ 0:1ð0:12 � 0:21Þ ¼ �0:01

Figure 6.26 Euclidean distance as a measure of similarity between vectors X and Wj
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The updated weight vector W3 at iteration ðp þ 1Þ is determined as:

W3ðp þ 1Þ ¼ W3ðpÞ þ�W3ðpÞ ¼
0:43

0:21

� �
þ

0:01

�0:01

� �
¼

0:44

0:20

� �

The weight vector W3 of the winning neuron 3 becomes closer to the input

vector X with each iteration.

Let us now summarise the competitive learning algorithm as follows

(Kohonen, 1989):

Step 1: Initialisation

Set initial synaptic weights to small random values, say in an interval

½0;1�, and assign a small positive value to the learning rate parameter �.

Step 2: Activation and similarity matching

Activate the Kohonen network by applying the input vector X, and find

the winner-takes-all (best matching) neuron jX at iteration p, using the

minimum-distance Euclidean criterion

jXðpÞ ¼ min
j

kX � WjðpÞk ¼
Xn

i¼1

½xi � wijðpÞ�2
( )1=2

; j ¼ 1;2; . . . ;m

where n is the number of neurons in the input layer, and m is the

number of neurons in the output or Kohonen layer.

Step 3: Learning

Update the synaptic weights

wijðp þ 1Þ ¼ wijðpÞ þ�wijðpÞ;

where �wijðpÞ is the weight correction at iteration p.

The weight correction is determined by the competitive learning

rule

�wijðpÞ ¼
�½xi � wijðpÞ�; j 2 �jðpÞ
0; j 62 �jðpÞ

�
; ð6:39Þ

where � is the learning rate parameter, and �jðpÞ is the neighbour-

hood function centred around the winner-takes-all neuron jX at

iteration p.

The neighbourhood function �j usually has a constant amplitude. It

implies that all the neurons located inside the topological neighbour-

hood are activated simultaneously, and the relationship among

those neurons is independent of their distance from the winner-takes-

all neuron jX. This simple form of a neighbourhood function is shown

in Figure 6.27.
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Figure 6.27 Rectangular neighbourhood function

Figure 6.28 Competitive learning in the Kohonen network: (a) initial random weights;

(b) network after 100 iterations; (c) network after 1000 iterations; (d) network after

10,000 iterations
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The rectangular neighbourhood function �j takes on a binary

character. Thus, identifying the neuron outputs, we may write

yj ¼
1; j 2 �jðpÞ
0; j 62 �jðpÞ

�
ð6:40Þ

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and continue until the

minimum-distance Euclidean criterion is satisfied, or no noticeable

changes occur in the feature map.

To illustrate competitive learning, consider the Kohonen network with 100

neurons arranged in the form of a two-dimensional lattice with 10 rows and

10 columns. The network is required to classify two-dimensional input vectors.

In other words, each neuron in the network should respond only to the input

vectors occurring in its region.

The network is trained with 1000 two-dimensional input vectors generated

randomly in a square region in the interval between �1 and þ1. Initial synaptic

weights are also set to random values in the interval between �1 and þ1, and the

learning rate parameter � is equal to 0.1.

Figure 6.28 demonstrates different stages in the process of network learning.

Each neuron is represented by a black dot at the location of its two weights, w1j

and w2j. Figure 6.28(a) shows the initial synaptic weights randomly distributed

in the square region. Figures 6.28(b), (c) and (d) present the weight vectors in the

input space after 100, 1000 and 10,000 iterations, respectively.

The results shown in Figure 6.28 demonstrate the self-organisation of the

Kohonen network that characterises unsupervised learning. At the end of

the learning process, the neurons are mapped in the correct order and the map

itself spreads out to fill the input space. Each neuron now is able to identify input

vectors in its own input space.

To see how neurons respond, let us test our network by applying the

following input vectors:

X1 ¼
0:2

0:9

� �
X2 ¼

0:6

�0:2

� �
X3 ¼

�0:7

�0:8

� �

As illustrated in Figure 6.29, neuron 6 responds to the input vector X1, neuron

69 responds to the input vector X2 and neuron 92 to the input vector X3. Thus,

the feature map displayed in the input space in Figure 6.29 is topologically

ordered and the spatial location of a neuron in the lattice corresponds to a

particular feature of input patterns.
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6.9 Summary

In this chapter, we introduced artificial neural networks and discussed the

basic ideas behind machine learning. We presented the concept of a perceptron

as a simple computing element and considered the perceptron learning rule.

We explored multilayer neural networks and discussed how to improve the

computational efficiency of the back-propagation learning algorithm. Then we

introduced recurrent neural networks, considered the Hopfield network training

algorithm and bidirectional associative memory (BAM). Finally, we presented

self-organising neural networks and explored Hebbian and competitive learning.

The most important lessons learned in this chapter are:

. Machine learning involves adaptive mechanisms that enable computers to

learn from experience, learn by example and learn by analogy. Learning

capabilities can improve the performance of an intelligent system over time.

One of the most popular approaches to machine learning is artificial neural

networks.

. An artificial neural network consists of a number of very simple and highly

interconnected processors, called neurons, which are analogous to the

biological neurons in the brain. The neurons are connected by weighted links

that pass signals from one neuron to another. Each link has a numerical

weight associated with it. Weights are the basic means of long-term memory

in ANNs. They express the strength, or importance, of each neuron input. A

neural network ‘learns’ through repeated adjustments of these weights.

 

 

Figure 6.29 Topologically ordered feature map displayed in the input space
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. In the 1940s, Warren McCulloch and Walter Pitts proposed a simple neuron

model that is still the basis for most artificial neural networks. The neuron

computes the weighted sum of the input signals and compares the result with

a threshold value. If the net input is less than the threshold, the neuron

output is �1. But if the net input is greater than or equal to the threshold, the

neuron becomes activated and its output attains a value þ1.

. Frank Rosenblatt suggested the simplest form of a neural network, which he

called a perceptron. The operation of the perceptron is based on the

McCulloch and Pitts neuron model. It consists of a single neuron with

adjustable synaptic weights and a hard limiter. The perceptron learns its task

by making small adjustments in the weights to reduce the difference between

the actual and desired outputs. The initial weights are randomly assigned and

then updated to obtain the output consistent with the training examples.

. A perceptron can learn only linearly separable functions and cannot make

global generalisations on the basis of examples learned locally. The limita-

tions of Rosenblatt’s perceptron can be overcome by advanced forms of neural

networks, such as multilayer perceptrons trained with the back-propagation

algorithm.

. A multilayer perceptron is a feedforward neural network with an input layer of

source neurons, at least one middle or hidden layer of computational neurons,

and an output layer of computational neurons. The input layer accepts input

signals from the outside world and redistributes these signals to all neurons in

the hidden layer. The hidden layer detects the feature. The weights of the

neurons in the hidden layer represent the features in the input patterns. The

output layer establishes the output pattern of the entire network.

. Learning in a multilayer network proceeds in the same way as in a perceptron.

The learning algorithm has two phases. First, a training input pattern is

presented to the network input layer. The network propagates the input

pattern from layer to layer until the output pattern is generated by the output

layer. If it is different from the desired output, an error is calculated and then

propagated backwards through the network from the output layer to the

input layer. The weights are modified as the error is propagated.

. Although widely used, back-propagation learning is not without problems.

Because the calculations are extensive and, as a result, training is slow, a pure

back-propagation algorithm is rarely used in practical applications. There are

several possible ways to improve computational efficiency. A multilayer

network learns much faster when the sigmoidal activation function is

represented by a hyperbolic tangent. The use of momentum and adaptive

learning rate also significantly improves the performance of a multilayer

back-propagation neural network.

. While multilayer back-propagation neural networks are used for pattern

recognition problems, the associative memory of humans is emulated by a

different type of network called recurrent: a recurrent network, which has

feedback loops from its outputs to its inputs. John Hopfield formulated the
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physical principle of storing information in a dynamically stable network,

and also proposed a single-layer recurrent network using McCulloch and Pitts

neurons with the sign activation function.

. The Hopfield network training algorithm has two basic phases: storage and

retrieval. In the first phase, the network is required to store a set of states, or

fundamental memories, determined by the current outputs of all neurons.

This is achieved by calculating the network’s weight matrix. Once the weights

are calculated, they remain fixed. In the second phase, an unknown corrupted

or incomplete version of the fundamental memory is presented to the

network. The network output is calculated and fed back to adjust the input.

This process is repeated until the output becomes constant. For the funda-

mental memories to be retrievable, the storage capacity of the Hopfield

network has to be kept small.

. The Hopfield network represents an autoassociative type of memory. It

can retrieve a corrupted or incomplete memory but cannot associate one

memory with another. To overcome this limitation, Bart Kosko proposed

the bidirectional associative memory (BAM). BAM is a heteroassociative

network. It associates patterns from one set to patterns from another set and

vice versa. As with a Hopfield network, the BAM can generalise and produce

correct outputs despite corrupted or incomplete inputs. The basic BAM

architecture consists of two fully connected layers – an input layer and an

output layer.

. The idea behind the BAM is to store pattern pairs so that when n-dimensional

vector X from set A is presented as input, the BAM recalls m-dimensional

vector Y from set B, but when Y is presented as input, the BAM recalls X. The

constraints on the storage capacity of the Hopfield network can also be

extended to the BAM. The number of associations to be stored in the BAM

should not exceed the number of neurons in the smaller layer. Another

problem is incorrect convergence, that is, the BAM may not always produce

the closest association.

. In contrast to supervised learning, or learning with an external ‘teacher’ who

presents a training set to the network, unsupervised or self-organised learning

does not require a teacher. During a training session, the neural network

receives a number of different input patterns, discovers significant features in

these patterns and learns how to classify input.

. Hebb’s Law, introduced by Donald Hebb in the late 1940s, states that if

neuron i is near enough to excite neuron j and repeatedly participates in its

activation, the synaptic connection between these two neurons is strength-

ened and neuron j becomes more sensitive to stimuli from neuron i. This law

provides the basis for learning without a teacher. Learning here is a local

phenomenon occurring without feedback from the environment.

. Another popular type of unsupervised learning is competitive learning. In

competitive learning, neurons compete among themselves to become active.

The output neuron that wins the ‘competition’ is called the winner-takes-all

ARTIFICIAL NEURAL NETWORKS214



neuron. Although competitive learning was proposed in the early 1970s, it

was largely ignored until the late 1980s, when Teuvo Kohonen introduced a

special class of artificial neural networks called self-organising feature maps.

He also formulated the principle of topographic map formation which states

that the spatial location of an output neuron in the topographic map

corresponds to a particular feature of the input pattern.

. The Kohonen network consists of a single layer of computation neurons, but

it has two different types of connections. There are forward connections from

the neurons in the input layer to the neurons in the output layer, and lateral

connections between neurons in the output layer. The lateral connections are

used to create a competition between neurons. In the Kohonen network, a

neuron learns by shifting its weights from inactive connections to active ones.

Only the winning neuron and its neighbourhood are allowed to learn. If a

neuron does not respond to a given input pattern, then learning does not

occur in that neuron.

Questions for review

1 How does an artificial neural network model the brain? Describe two major classes of

learning paradigms: supervised learning and unsupervised (self-organised) learning.

What are the features that distinguish these two paradigms from each other?

2 What are the problems with using a perceptron as a biological model? How does the

perceptron learn? Demonstrate perceptron learning of the binary logic function OR.

Why can the perceptron learn only linearly separable functions?

3 What is a fully connected multilayer perceptron? Construct a multilayer perceptron with

an input layer of six neurons, a hidden layer of four neurons and an output layer of two

neurons. What is a hidden layer for, and what does it hide?

4 How does a multilayer neural network learn? Derive the back-propagation training

algorithm. Demonstrate multilayer network learning of the binary logic function

Exclusive-OR.

5 What are the main problems with the back-propagation learning algorithm? How can

learning be accelerated in multilayer neural networks? Define the generalised delta

rule.

6 What is a recurrent neural network? How does it learn? Construct a single six-neuron

Hopfield network and explain its operation. What is a fundamental memory?

7 Derive the Hopfield network training algorithm. Demonstrate how to store three

fundamental memories in the six-neuron Hopfield network.

8 The delta rule and Hebb’s rule represent two different methods of learning in neural

networks. Explain the differences between these two rules.

9 What is the difference between autoassociative and heteroassociative types of

memory? What is the bidirectional associative memory (BAM)? How does the BAM

work?
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10 Derive the BAM training algorithm. What constraints are imposed on the storage

capacity of the BAM? Compare the BAM storage capacity with the storage capacity of

the Hopfield network.

11 What does Hebb’s Law represent? Derive the activity product rule and the generalised

activity product rule. What is the meaning of the forgetting factor? Derive the

generalised Hebbian learning algorithm.

12 What is competitive learning? What are the differences between Hebbian and

competitive learning paradigms? Describe the feature-mapping Kohonen model. Derive

the competitive learning algorithm.
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7Evolutionary computation

In which we consider the field of evolutionary computation, including

genetic algorithms, evolution strategies and genetic programming,

and their applications to machine learning.

7.1 Introduction, or can evolution be intelligent?

Intelligence can be defined as the capability of a system to adapt its behaviour to

an ever-changing environment. According to Alan Turing (Turing, 1950), the

form or appearance of a system is irrelevant to its intelligence. However, from

our everyday experience we know that evidences of intelligent behaviour are

easily observed in humans. But we are products of evolution, and thus by

modelling the process of evolution, we might expect to create intelligent

behaviour. Evolutionary computation simulates evolution on a computer. The

result of such a simulation is a series of optimisation algorithms, usually based

on a simple set of rules. Optimisation iteratively improves the quality of

solutions until an optimal, or at least feasible, solution is found.

But is evolution really intelligent? We can consider the behaviour of an

individual organism as an inductive inference about some yet unknown aspects

of its environment (Fogel et al., 1966). Then if, over successive generations, the

organism survives, we can say that this organism is capable of learning to predict

changes in its environment. Evolution is a tortuously slow process from the

human perspective, but the simulation of evolution on a computer does not take

billions of years!

The evolutionary approach to machine learning is based on computational

models of natural selection and genetics. We call them evolutionary computa-

tion, an umbrella term that combines genetic algorithms, evolution strategies

and genetic programming. All these techniques simulate evolution by using the

processes of selection, mutation and reproduction.

7.2 Simulation of natural evolution

On 1 July 1858, Charles Darwin presented his theory of evolution before the

Linnean Society of London. This day marks the beginning of a revolution in



biology. Darwin’s classical theory of evolution, together with Weismann’s

theory of natural selection and Mendel’s concept of genetics, now represent

the neo-Darwinian paradigm (Keeton, 1980; Mayr, 1988).

Neo-Darwinism is based on processes of reproduction, mutation, competi-

tion and selection. The power to reproduce appears to be an essential property

of life. The power to mutate is also guaranteed in any living organism that

reproduces itself in a continuously changing environment. Processes of com-

petition and selection normally take place in the natural world, where

expanding populations of different species are limited by a finite space.

If the process of evolution is to be emulated on a computer, what is being

optimised by evolution in natural life? Evolution can be seen as a process

leading to the maintenance or increase of a population’s ability to survive

and reproduce in a specific environment (Hartl and Clark, 1989). This

ability is called evolutionary fitness. Although fitness cannot be measured

directly, it can be estimated on the basis of the ecology and functional

morphology of the organism in its environment (Hoffman, 1989). Evolu-

tionary fitness can also be viewed as a measure of the organism’s ability to

anticipate changes in its environment (Atmar, 1994). Thus, the fitness, or

the quantitative measure of the ability to predict environmental changes

and respond adequately, can be considered as the quality that is being

optimised in natural life.

To illustrate fitness, we can use the concept of adaptive topology (Wright,

1932). We can represent a given environment by a landscape where each peak

corresponds to the optimised fitness of a species. As evolution takes place, each

species of a given population moves up the slopes of the landscape towards the

peaks. Environmental conditions change over time, and thus the species have

to continuously adjust their routes. As a result, only the fittest can reach the

peaks.

Adaptive topology is a continuous function; it simulates the fact that the

environment, or natural topology, is not static. The shape of the topology

changes over time, and all species continually undergo selection. The goal of

evolution is to generate a population of individuals with increasing fitness.

But how is a population with increasing fitness generated? Michalewicz

(1996) suggests a simple explanation based on a population of rabbits. Some

rabbits are faster than others, and we may say that these rabbits possess superior

fitness because they have a greater chance of avoiding foxes, surviving and

then breeding. Of course, some of the slower rabbits may survive too. As a

result, some slow rabbits breed with fast rabbits, some fast with other fast rabbits,

and some slow rabbits with other slow rabbits. In other words, the breeding

generates a mixture of rabbit genes. If two parents have superior fitness, there is a

good chance that a combination of their genes will produce an offspring with

even higher fitness. Over time the entire population of rabbits becomes faster to

meet their environmental challenges in the face of foxes. However, environ-

mental conditions could change in favour of say, fat but smart rabbits. To

optimise survival, the genetic structure of the rabbit population will change

accordingly. At the same time, faster and smarter rabbits encourage the breeding
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of faster and smarter foxes. Natural evolution is a continuous, never-ending

process.

Can we simulate the process of natural evolution in a computer?

Several different methods of evolutionary computation are now known. They all

simulate natural evolution, generally by creating a population of individuals,

evaluating their fitness, generating a new population through genetic opera-

tions, and repeating this process a number of times. However, there are different

ways of performing evolutionary computation. We will start with genetic

algorithms (GAs) as most of the other evolutionary algorithms can be viewed

as variations of GAs.

In the early 1970s, John Holland, one of the founders of evolutionary

computation, introduced the concept of genetic algorithms (Holland, 1975).

His aim was to make computers do what nature does. As a computer scientist,

Holland was concerned with algorithms that manipulate strings of binary digits.

He viewed these algorithms as an abstract form of natural evolution. Holland’s

GA can be represented by a sequence of procedural steps for moving from one

population of artificial ‘chromosomes’ to a new population. It uses ‘natural’

selection and genetics-inspired techniques known as crossover and mutation.

Each chromosome consists of a number of ‘genes’, and each gene is represented

by 0 or 1, as shown in Figure 7.1.

Nature has an ability to adapt and learn without being told what to do. In

other words, nature finds good chromosomes blindly. GAs do the same. Two

mechanisms link a GA to the problem it is solving: encoding and evaluation.

In Holland’s work, encoding is carried out by representing chromosomes as

strings of ones and zeros. Although many other types of encoding techniques

have been invented (Davis, 1991), no one type works best for all problems. We

will use bit strings as the most popular technique.

An evaluation function is used to measure the chromosome’s performance, or

fitness, for the problem to be solved (an evaluation function in GAs plays the

same role the environment plays in natural evolution). The GA uses a measure of

fitness of individual chromosomes to carry out reproduction. As reproduction

takes place, the crossover operator exchanges parts of two single chromosomes,

and the mutation operator changes the gene value in some randomly chosen

location of the chromosome. As a result, after a number of successive reproduc-

tions, the less fit chromosomes become extinct, while those best able to survive

gradually come to dominate the population. It is a simple approach, yet even

crude reproduction mechanisms display highly complex behaviour and are

capable of solving some difficult problems.

Let us now discuss genetic algorithms in more detail.

Figure 7.1 A 16-bit binary string of an artificial chromosome
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7.3 Genetic algorithms

We start with a definition: genetic algorithms are a class of stochastic search

algorithms based on biological evolution. Given a clearly defined problem to be

solved and a binary string representation for candidate solutions, a basic GA can

be represented as in Figure 7.2. A GA applies the following major steps (Davis,

1991; Mitchell, 1996):

Step 1: Represent the problem variable domain as a chromosome of a fixed

length, choose the size of a chromosome population N, the crossover

probability pc and the mutation probability pm.

Step 2: Define a fitness function to measure the performance, or fitness, of an

individual chromosome in the problem domain. The fitness function

establishes the basis for selecting chromosomes that will be mated

during reproduction.

Step 3: Randomly generate an initial population of chromosomes of size N:

x1; x2; . . . ; xN

Step 4: Calculate the fitness of each individual chromosome:

f ðx1Þ; f ðx2Þ; . . . ; f ðxNÞ

Step 5: Select a pair of chromosomes for mating from the current population.

Parent chromosomes are selected with a probability related to their

fitness. Highly fit chromosomes have a higher probability of being

selected for mating than less fit chromosomes.

Step 6: Create a pair of offspring chromosomes by applying the genetic

operators – crossover and mutation.

Step 7: Place the created offspring chromosomes in the new population.

Step 8: Repeat Step 5 until the size of the new chromosome population

becomes equal to the size of the initial population, N.

Step 9: Replace the initial (parent) chromosome population with the new

(offspring) population.

Step 10: Go to Step 4, and repeat the process until the termination criterion is

satisfied.

As we see, a GA represents an iterative process. Each iteration is called a

generation. A typical number of generations for a simple GA can range from 50

to over 500 (Mitchell, 1996). The entire set of generations is called a run. At the

end of a run, we expect to find one or more highly fit chromosomes.
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Are any conventional termination criteria used in genetic algorithms?

Because GAs use a stochastic search method, the fitness of a population may

remain stable for a number of generations before a superior chromosome

appears. This makes applying conventional termination criteria problematic. A

common practice is to terminate a GA after a specified number of generations

Figure 7.2 A basic genetic algorithm

223GENETIC ALGORITHMS



and then examine the best chromosomes in the population. If no satisfactory

solution is found, the GA is restarted.

A simple example will help us to understand how a GA works. Let us find the

maximum value of the function ð15x � x2Þ where parameter x varies between 0

and 15. For simplicity, we may assume that x takes only integer values. Thus,

chromosomes can be built with only four genes:

Integer Binary code Integer Binary code Integer Binary code

1 0 0 0 1 6 0 1 1 0 11 1 0 1 1

2 0 0 1 0 7 0 1 1 1 12 1 1 0 0

3 0 0 1 1 8 1 0 0 0 13 1 1 0 1

4 0 1 0 0 9 1 0 0 1 14 1 1 1 0

5 0 1 0 1 10 1 0 1 0 15 1 1 1 1

Suppose that the size of the chromosome population N is 6, the crossover

probability pc equals 0.7, and the mutation probability pm equals 0.001. (The

values chosen for pc and pm are fairly typical in GAs.) The fitness function in our

example is defined by

f ðxÞ ¼ 15x � x2

The GA creates an initial population of chromosomes by filling six 4-bit

strings with randomly generated ones and zeros. The initial population might

look like that shown in Table 7.1. The chromosomes’ initial locations on the

fitness function are illustrated in Figure 7.3(a).

A real practical problem would typically have a population of thousands of

chromosomes.

The next step is to calculate the fitness of each individual chromosome. The

results are also shown in Table 7.1. The average fitness of the initial population is

36. In order to improve it, the initial population is modified by using selection,

crossover and mutation, the genetic operators.

In natural selection, only the fittest species can survive, breed, and thereby

pass their genes on to the next generation. GAs use a similar approach, but

Table 7.1 The initial randomly generated population of chromosomes

Chromosome

label

Chromosome

string

Decoded

integer

Chromosome

fitness

Fitness

ratio, %

X1 1 1 0 0 12 36 16.5

X2 0 1 0 0 4 44 20.2

X3 0 0 0 1 1 14 6.4

X4 1 1 1 0 14 14 6.4

X5 0 1 1 1 7 56 25.7

X6 1 0 0 1 9 54 24.8
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unlike nature, the size of the chromosome population remains unchanged from

one generation to the next.

How can we maintain the size of the population constant, and at the

same time improve its average fitness?

The last column in Table 7.1 shows the ratio of the individual chromosome’s

fitness to the population’s total fitness. This ratio determines the chromo-

some’s chance of being selected for mating. Thus, the chromosomes X5 and X6

stand a fair chance, while the chromosomes X3 and X4 have a very low

probability of being selected. As a result, the chromosome’s average fitness

improves from one generation to the next.

One of the most commonly used chromosome selection techniques is the

roulette wheel selection (Goldberg, 1989; Davis, 1991). Figure 7.4 illustrates the

roulette wheel for our example. As you can see, each chromosome is given a slice

of a circular roulette wheel. The area of the slice within the wheel is equal to the

chromosome fitness ratio (see Table 7.1). For instance, the chromosomes X5 and

X6 (the most fit chromosomes) occupy the largest areas, whereas the chromo-

somes X3 and X4 (the least fit) have much smaller segments in the roulette

wheel. To select a chromosome for mating, a random number is generated in the

interval ½0;100�, and the chromosome whose segment spans the random number

is selected. It is like spinning a roulette wheel where each chromosome has a

segment on the wheel proportional to its fitness. The roulette wheel is spun, and

Figure 7.3 The fitness function and chromosome locations: (a) chromosome initial

locations; (b) chromosome final locations

Figure 7.4 Roulette wheel selection
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when the arrow comes to rest on one of the segments, the corresponding

chromosome is selected.

In our example, we have an initial population of six chromosomes. Thus, to

establish the same population in the next generation, the roulette wheel would

be spun six times. The first two spins might select chromosomes X6 and X2 to

become parents, the second pair of spins might choose chromosomes X1 and

X5, and the last two spins might select chromosomes X2 and X5.

Once a pair of parent chromosomes is selected, the crossover operator is

applied.

How does the crossover operator work?

First, the crossover operator randomly chooses a crossover point where two

parent chromosomes ‘break’, and then exchanges the chromosome parts after

that point. As a result, two new offspring are created. For example, the

chromosomes X6 and X2 could be crossed over after the second gene in each

to produce the two offspring, as shown in Figure 7.5.

If a pair of chromosomes does not cross over, then chromosome cloning takes

place, and the offspring are created as exact copies of each parent. For example,

the parent chromosomes X2 and X5 may not cross over. Instead, they create the

offspring that are their exact copies, as shown in Figure 7.5.

A value of 0.7 for the crossover probability generally produces good results.

After selection and crossover, the average fitness of the chromosome population

has improved and gone from 36 to 42.

What does mutation represent?

Mutation, which is rare in nature, represents a change in the gene. It may lead to

a significant improvement in fitness, but more often has rather harmful results.

So why use mutation at all? Holland introduced mutation as a background

operator (Holland, 1975). Its role is to provide a guarantee that the search

algorithm is not trapped on a local optimum. The sequence of selection and

crossover operations may stagnate at any homogeneous set of solutions. Under

such conditions, all chromosomes are identical, and thus the average fitness of

the population cannot be improved. However, the solution might appear to

become optimal, or rather locally optimal, only because the search algorithm is

not able to proceed any further. Mutation is equivalent to a random search, and

aids us in avoiding loss of genetic diversity.

How does the mutation operator work?

The mutation operator flips a randomly selected gene in a chromosome. For

example, the chromosome X10 might be mutated in its second gene, and the

chromosome X2 in its third gene, as shown in Figure 7.5. Mutation can occur at

any gene in a chromosome with some probability. The mutation probability is

quite small in nature, and is kept quite low for GAs, typically in the range

between 0.001 and 0.01.

Genetic algorithms assure the continuous improvement of the average fitness

of the population, and after a number of generations (typically several hundred)
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the population evolves to a near-optimal solution. In our example, the

final population would consist of only chromosomes and .

The chromosome’s final locations on the fitness function are illustrated in

Figure 7.3(b).

In this example, the problem has only one variable. It is easy to represent. But

suppose it is desired to find the maximum of the ‘peak’ function of two variables:

f ðx; yÞ ¼ ð1 � xÞ2e�x2�ðyþ1Þ2 � ðx � x3 � y3Þe�x2�y2
,

where parameters x and y vary between �3 and 3.

0 1 1 1 1 0 0 0

Figure 7.5 The GA cycle
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The first step is to represent the problem variables as a chromosome. In other

words, we represent parameters x and y as a concatenated binary string:

in which each parameter is represented by eight binary bits.

Then, we choose the size of the chromosome population, for instance 6, and

randomly generate an initial population.

The next step is to calculate the fitness of each chromosome. This is done in

two stages. First, a chromosome is decoded by converting it into two real

numbers, x and y, in the interval between �3 and 3. Then the decoded values

of x and y are substituted into the ‘peak’ function.

How is decoding done?

First, a chromosome, that is a string of 16 bits, is partitioned into two 8-bit

strings:

and

Then these strings are converted from binary (base 2) to decimal (base 10):

ð10001010Þ2 ¼1	27 þ0	26 þ0	25 þ0	24 þ1	23 þ0	22 þ1	21 þ0	20

¼ð138Þ10

and

ð00111011Þ2 ¼0	27 þ0	26 þ1	25 þ1	24 þ1	23 þ0	22 þ1	21 þ1	20

¼ð59Þ10

Now the range of integers that can be handled by 8-bits, that is the range from 0

to ð28 � 1Þ, is mapped to the actual range of parameters x and y, that is the range

from �3 to 3:

6

256 � 1
¼ 0:0235294

To obtain the actual values of x and y, we multiply their decimal values by

0.0235294 and subtract 3 from the results:

x ¼ ð138Þ10 	 0:0235294 � 3 ¼ 0:2470588

and

y ¼ ð59Þ10 	 0:0235294 � 3 ¼ �1:6117647

1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
x y

1 0 0 0 1 0 1 0 0 0 1 1 1 0 1 1
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When necessary, we can also apply other decoding techniques, such as Gray

coding (Caruana and Schaffer, 1988).

Using decoded values of x and y as inputs in the mathematical function, the

GA calculates the fitness of each chromosome.

To find the maximum of the ‘peak’ function, we will use crossover with the

probability equal to 0.7 and mutation with the probability equal to 0.001. As we

mentioned earlier, a common practice in GAs is to specify the number of

generations. Suppose the desired number of generations is 100. That is, the GA

will create 100 generations of 6 chromosomes before stopping.

Figure 7.6(a) shows the initial locations of the chromosomes on the surface

and contour plot of the ‘peak’ function. Each chromosome here is represented by

a sphere. The initial population consists of randomly generated individuals that

are dissimilar or heterogeneous. However, starting from the second generation,

crossover begins to recombine features of the best chromosomes, and the

population begins to converge on the peak containing the maximum, as shown

in Figure 7.6(b). From then until the final generation, the GA is searching around

this peak with mutation, resulting in diversity. Figure 7.6(c) shows the final

chromosome generation. However, the population has converged on a chromo-

some lying on a local maximum of the ‘peak’ function.

But we are looking for the global maximum, so can we be sure the search is for

the optimal solution? The most serious problem in the use of GAs is concerned

with the quality of the results, in particular whether or not an optimal solution is

Figure 7.6 Chromosome locations on the surface and contour plot of the ‘peak’

function: (a) initial population; (b) first generation; (c) local maximum solution;

(d) global maximum solution
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being reached. One way of providing some degree of insurance is to compare

results obtained under different rates of mutation. Let us, for example, increase

the mutation rate to 0.01 and rerun the GA. The population might now converge

on the chromosomes shown in Figure 7.6(d). However, to be sure of steady

results we must increase the size of the chromosome population.

Figure 7.7 Performance graphs for 100 generations of 6 chromosomes: (a) local

maximum solution and (b) global maximum solution of the ‘peak’ function
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A surface of a mathematical function of the sort given in Figure 7.6 is a

convenient medium for displaying the GA’s performance. However, fitness

functions for real world problems cannot be easily represented graphically.

Instead, we can use performance graphs.

What is a performance graph?

Since genetic algorithms are stochastic, their performance usually varies from

generation to generation. As a result, a curve showing the average performance

of the entire population of chromosomes as well as a curve showing the

performance of the best individual in the population is a useful way of

examining the behaviour of a GA over the chosen number of generations.

Figures 7.7(a) and (b) show plots of the best and average values of the fitness

function across 100 generations. The x-axis of the performance graph indicates

how many generations have been created and evaluated at the particular point

in the run, and the y-axis displays the value of the fitness function at that point.

The erratic behaviour of the average performance curves is due to mutation.

The mutation operator allows a GA to explore the landscape in a random

manner. Mutation may lead to significant improvement in the population

fitness, but more often decreases it. To ensure diversity and at the same time to

reduce the harmful effects of mutation, we can increase the size of the

chromosome population. Figure 7.8 shows performance graphs for 20 genera-

tions of 60 chromosomes. The best and average curves represented here are

typical for GAs. As you can see, the average curve rises rapidly at the beginning of

the run, but then as the population converges on the nearly optimal solution, it

rises more slowly, and finally flattens at the end.

Figure 7.8 Performance graphs for 20 generations of 60 chromosomes
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7.4 Why genetic algorithms work

The GA techniques have a solid theoretical foundation (Holland, 1975;

Goldberg, 1989; Rawlins, 1991; Whitley, 1993). That foundation is based on

the Schema Theorem.

John Holland introduced the notation of schema (Holland, 1975), which

came from the Greek word meaning ‘form’. A schema is a set of bit strings of

ones, zeros and asterisks, where each asterisk can assume either value 1 or 0. The

ones and zeros represent the fixed positions of a schema, while asterisks

represent ‘wild cards’. For example, the schema stands for a set of

4-bit strings. Each string in this set begins with 1 and ends with 0. These strings

are called instances of the schema.

What is the relationship between a schema and a chromosome?

It is simple. A chromosome matches a schema when the fixed positions in the

schema match the corresponding positions in the chromosome. For example,

the schema H

matches the following set of 4-bit chromosomes:

Each chromosome here begins with 1 and ends with 0. These chromosomes are

said to be instances of the schema H.

The number of defined bits (non-asterisks) in a schema is called the order.

The schema H, for example, has two defined bits, and thus its order is 2.

In short, genetic algorithms manipulate schemata (schemata is the plural of

the word schema) when they run. If GAs use a technique that makes the

probability of reproduction proportional to chromosome fitness, then according

to the Schema Theorem (Holland, 1975), we can predict the presence of a given

schema in the next chromosome generation. In other words, we can describe the

GA’s behaviour in terms of the increase or decrease in the number of instances of

a given schema (Goldberg, 1989).

Let us assume that at least one instance of the schema H is present in the

chromosome initial generation i. Now let mHðiÞ be the number of instances of

the schema H in the generation i, and f̂f HðiÞ be the average fitness of these

instances. We want to calculate the number of instances in the next generation,

mHði þ 1Þ. As the probability of reproduction is proportional to chromosome

fitness, we can easily calculate the expected number of offspring of a chromo-

some x in the next generation:

1 
 
 0

1 
 
 0

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0
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mxði þ 1Þ ¼ fxðiÞ
f̂f ðiÞ

; ð7:1Þ

where fxðiÞ is the fitness of the chromosome x, and f̂f ðiÞ is the average fitness of

the chromosome initial generation i.

Then, assuming that the chromosome x is an instance of the schema H, we

obtain

mHði þ 1Þ ¼

Xx¼mH ðiÞ

x¼1

fxðiÞ

f̂f ðiÞ
; x 2 H ð7:2Þ

Since, by definition,

f̂f HðiÞ ¼

Xx¼mH ðiÞ

x¼1

fxðiÞ

mHðiÞ
;

we obtain

mHði þ 1Þ ¼ f̂f HðiÞ
f̂f ðiÞ

mHðiÞ ð7:3Þ

Thus, a schema with above-average fitness will indeed tend to occur more

frequently in the next generation of chromosomes, and a schema with below-

average fitness will tend to occur less frequently.

How about effects caused by crossover and mutation?

Crossover and mutation can both create and destroy instances of a schema. Here

we will consider only destructive effects, that is effects that decrease the number

of instances of the schema H. Let us first quantify the destruction caused by the

crossover operator. The schema will survive after crossover if at least one of its

offspring is also its instance. This is the case when crossover does not occur

within the defining length of the schema.

What is the defining length of a schema?

The distance between the outermost defined bits of a schema is called

defining length. For example, the defining length of is 3,

of is 5 and of is 7.

If crossover takes place within the defining length, the schema H can be

destroyed and offspring that are not instances of H can be created. (Although the

schema H will not be destroyed if two identical chromosomes cross over, even

when crossover occurs within the defining length.)


 
 
 
 1 0 1 1

 0 
 1 
 1 0 
 1 
 
 
 
 
 
 0
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Thus, the probability that the schema H will survive after crossover can be

defined as:

P
ðcÞ
H ¼ 1 � pc

ld
l � 1

� �
; ð7:4Þ

where pc is the crossover probability, and l and ld are, respectively, the length and

the defining length of the schema H.

It is clear, that the probability of survival under crossover is higher for short

schemata rather than for long ones.

Now consider the destructive effects of mutation. Let pm be the mutation

probability for any bit of the schema H, and n be the order of the schema H.

Then ð1 � pmÞ represents the probability that the bit will not be mutated,

and thus the probability that the schema H will survive after mutation is

determined as:

P
ðmÞ
H ¼ ð1 � pmÞn ð7:5Þ

It is also clear that the probability of survival under mutation is higher for

low-order schemata than for high-order ones.

We can now amend Eq. (7.3) to take into account the destructive effects of

crossover and mutation:

mHði þ 1Þ ¼ f̂f HðiÞ
f̂f ðiÞ

mHðiÞ 1 � pc
ld

l � 1

� �	 

ð1 � pmÞn ð7:6Þ

This equation describes the growth of a schema from one generation to the

next. It is known as the Schema Theorem. Because Eq. (7.6) considers only

the destructive effects of crossover and mutation, it gives us a lower bound

on the number of instances of the schema H in the next generation.

Despite crossover arguably representing a major advantage of GAs, there is as

yet no theoretical basis to support the view that a GA will outperform other

search and optimisation techniques just because crossover allows the combina-

tion of partial solutions.

Genetic algorithms are a very powerful tool, but need to be applied intelli-

gently. For example, coding the problem as a bit string may change the nature of

the problem being investigated. In other words, there is a danger that the coded

representation becomes a problem that is different from the one we wanted to

solve.

To illustrate the ideas discussed above, we consider a simple application of the

GA to problems of scheduling resources.
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7.5 Case study: maintenance scheduling with genetic
algorithms

One of the most successful areas for GA applications includes the problem of

scheduling resources. Scheduling problems are complex and difficult to solve.

They are usually approached with a combination of search techniques and

heuristics.

Why are scheduling problems so difficult?

First, scheduling belongs to NP-complete problems. Such problems are likely to

be unmanageable and cannot be solved by combinatorial search techniques.

Moreover, heuristics alone cannot guarantee the best solution.

Second, scheduling problems involve a competition for limited resources; as a

result, they are complicated by many constraints. The key to the success of the

GA lies in defining a fitness function that incorporates all these constraints.

The problem we discuss here is the maintenance scheduling in modern power

systems. This task has to be carried out under several constraints and uncertain-

ties, such as failures and forced outages of power equipment and delays in

obtaining spare parts. The schedule often has to be revised at short notice.

Human experts usually work out the maintenance scheduling by hand, and

there is no guarantee that the optimum or even near-optimum schedule is

produced.

A typical process of the GA development includes the following steps:

1 Specify the problem, define constraints and optimum criteria.

2 Represent the problem domain as a chromosome.

3 Define a fitness function to evaluate the chromosome’s performance.

4 Construct the genetic operators.

5 Run the GA and tune its parameters.

Step 1: Specify the problem, define constraints and optimum criteria

This is probably the most important step in developing a GA, because if

it is not correct and complete a viable schedule cannot be obtained.

Power system components are made to operate continuously

throughout their life by means of preventive maintenance. The

purpose of maintenance scheduling is to find the sequence of outages

of power units over a given period of time (normally a year) such that

the security of a power system is maximised.

Any outage in a power system is associated with some loss in

security. The security margin is determined by the system’s net reserve.

The net reserve, in turn, is defined as the total installed generating

capacity of the system minus the power lost due to a scheduled outage

and minus the maximum load forecast during the maintenance period.

For instance, if we assume that the total installed capacity is 150 MW
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and a unit of 20 MW is scheduled for maintenance during the period

when the maximum load is predicted to be 100 MW, then the net

reserve will be 30 MW. Maintenance scheduling must ensure that

sufficient net reserve is provided for secure power supply during any

maintenance period.

Suppose, there are seven power units to be maintained in four equal

intervals. The maximum loads expected during these intervals are

80, 90, 65 and 70 MW. The unit capacities and their maintenance

requirements are presented in Table 7.2.

The constraints for this problem can be specified as follows:

. Maintenance of any unit starts at the beginning of an interval and

finishes at the end of the same or adjacent interval. The main-

tenance cannot be aborted or finished earlier than scheduled.
. The net reserve of the power system must be greater than or equal to

zero at any interval.

The optimum criterion here is that the net reserve must be at the

maximum during any maintenance period.

Step 2: Represent the problem domain as a chromosome

Our scheduling problem is essentially an ordering problem, requiring

us to list the tasks in a particular order. A complete schedule may

consist of a number of overlapping tasks, but not all orderings are legal,

since they may violate the constraints. Our job is to represent a

complete schedule as a chromosome of a fixed length.

An obvious coding scheme that comes to mind is to assign each unit

a binary number and to let the chromosome be a sequence of these

binary numbers. However, an ordering of the units in a sequence is not

yet a schedule. Some units can be maintained simultaneously, and we

must also incorporate the time required for unit maintenance into the

schedule. Thus, rather than ordering units in a sequence, we might

build a sequence of maintenance schedules of individual units. The

unit schedule can be easily represented as a 4-bit string, where each bit

is a maintenance interval. If a unit is to be maintained in a particular

Table 7.2 Power units and their maintenance requirements

Unit

number

Unit capacity,

MW

Number of intervals required for

unit maintenance during one year

1 20 2

2 15 2

3 35 1

4 40 1

5 15 1

6 15 1

7 10 1
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interval, the corresponding bit assumes value 1, otherwise it is 0. For

example, the string presents a schedule for a unit to be

maintained in the second interval. It also shows that the number of

intervals required for maintenance of this unit is equal to 1. Thus, a

complete maintenance schedule for our problem can be represented as

a 28-bit chromosome.

However, crossover and mutation operators could easily create

binary strings that call for maintaining some units more than once

and others not at all. In addition, we could call for maintenance

periods that would exceed the number of intervals really required for

unit maintenance.

A better approach is to change the chromosome syntax. As already

discussed, a chromosome is a collection of elementary parts called

genes. Traditionally, each gene is represented by only one bit and

cannot be broken into smaller elements. For our problem, we can adopt

the same concept, but represent a gene by four bits. In other words, the

smallest indivisible part of our chromosome is a 4-bit string. This

representation allows crossover and mutation operators to act accord-

ing to the theoretical grounding of genetic algorithms. What remains

to be done is to produce a pool of genes for each unit:

The GA can now create an initial population of chromosomes by filling

7-gene chromosomes with genes randomly selected from the corres-

ponding pools. A sample of such a chromosome is shown in Figure 7.9.

Step 3: Define a fitness function to evaluate the chromosome performance

The chromosome evaluation is a crucial part of the GA, because

chromosomes are selected for mating based on their fitness. The fitness

function must capture what makes a maintenance schedule either good

or bad for the user. For our problem we apply a fairly simple function

concerned with constraint violations and the net reserve at each

interval.

0 1 0 0

Figure 7.9 A chromosome for the scheduling problem

1 1 0 0

1 1 0 0

1 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0

0 1 1 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 1

0 0 1 1

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Unit 1:

Unit 2:

Unit 3:

Unit 4:

Unit 5:

Unit 6:

Unit 7:
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The evaluation of a chromosome starts with the sum of capacities of

the units scheduled for maintenance at each interval. For the chromo-

some shown in Figure 7.9, we obtain:

Interval 1: 0	20þ0	15þ0	35þ1	40þ0	15þ0	15þ1	10

¼ 50

Interval 2: 1	20þ0	15þ0	35þ0	40þ1	15þ0	15þ0	10

¼ 35

Interval 3: 1	20þ1	15þ0	35þ0	40þ0	15þ1	15þ0	10

¼ 50

Interval 4: 0	20þ1	15þ1	35þ0	40þ0	15þ0	15þ0	10

¼ 50

Then these values are subtracted from the total installed capacity of the

power system (in our case, 150 MW):

Interval 1: 150 � 50 ¼ 100

Interval 2: 150 � 35 ¼ 115

Interval 3: 150 � 50 ¼ 100

Interval 4: 150 � 50 ¼ 100

And finally, by subtracting the maximum loads expected at each

interval, we obtain the respective net reserves:

Interval 1: 100 � 80 ¼ 20

Interval 2: 115 � 90 ¼ 25

Interval 3: 100 � 65 ¼ 35

Interval 4: 100 � 70 ¼ 30

Since all the results are positive, this particular chromosome does not

violate any constraint, and thus represents a legal schedule. The

chromosome’s fitness is determined as the lowest of the net reserves;

in our case it is 20.

If, however, the net reserve at any interval is negative, the schedule

is illegal, and the fitness function returns zero.

At the beginning of a run, a randomly built initial population might

consist of all illegal schedules. In this case, chromosome fitness values

remain unchanged, and selection takes place in accordance with the

actual fitness values.

Step 4: Construct the genetic operators

Constructing genetic operators is challenging and we must experiment

to make crossover and mutation work correctly. The chromosome has to

be broken up in a way that is legal for our problem. Since we have

already changed the chromosome syntax for this, we can use the GA

operators in their classical forms. Each gene in a chromosome is

represented by a 4-bit indivisible string, which consists of a possible

maintenance schedule for a particular unit. Thus, any random mutation
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of a gene or recombination of several genes from two parent chromo-

somes may result only in changes of the maintenance schedules for

individual units, but cannot create ‘unnatural’ chromosomes.

Figure 7.10(a) shows an example of the crossover application during

a run of the GA. The children are made by cutting the parents at the

randomly selected point denoted by the vertical line and exchanging

parental genes after the cut. Figure 7.10(b) demonstrates an example of

mutation. The mutation operator randomly selects a 4-bit gene in

a chromosome and replaces it by a gene randomly selected from

the corresponding pool. In the example shown in Figure 7.10(b), the

chromosome is mutated in its third gene, which is replaced by the gene

chosen from the pool of genes for the Unit 3.

Step 5: Run the GA and tune its parameters

It is time to run the GA. First, we must choose the population size and

the number of generations to be run. Common sense suggests that a

larger population can achieve better solutions than a smaller one, but

will work more slowly. In fact, however, the most effective population

size depends on the problem being solved, particularly on the problem

coding scheme (Goldberg, 1989). The GA can run only a finite number

of generations to obtain a solution. Perhaps we could choose a very

large population and run it only once, or we could choose a smaller

population and run it several times. In any case, only experimentation

can give us the answer.

0 0 0 1

Figure 7.10 Genetic operators for the scheduling problem: (a) the crossover operator;

(b) the mutation operator
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Figure 7.11 Performance graphs and the best maintenance schedules created in a

population of 20 chromosomes: (a) 50 generations; (b) 100 generations
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Figure 7.12 Performance graphs and the best maintenance schedules created in a

population of 100 chromosomes: (a) mutation rate is 0.001; (b) mutation rate is 0.01
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Figure 7.11(a) presents performance graphs and the best schedule created by

50 generations of 20 chromosomes. As you can see, the minimum of the net

reserves for the best schedule is 15 MW. Let us increase the number of genera-

tions to 100 and compare the best schedules. Figure 7.11(b) presents the results.

The best schedule now provides the minimum net reserve of 20 MW. However,

in both cases, the best individuals appeared in the initial generation, and the

increasing number of generations did not affect the final solution. It indicates

that we should try increasing the population size.

Figure 7.12(a) shows fitness function values across 100 generations, and the

best schedule so far. The minimum net reserve has increased to 25 MW. To make

sure of the quality of the best-so-far schedule, we must compare results obtained

under different rates of mutation. Thus, let us increase the mutation rate to 0.01

and rerun the GA once more. Figure 7.12(b) presents the results. The minimum

net reserve is still 25 MW. Now we can confidently argue that the optimum

solution has been found.

7.6 Evolution strategies

Another approach to simulating natural evolution was proposed in Germany in

the early 1960s. Unlike genetic algorithms, this approach – called an evolution

strategy – was designed to solve technical optimisation problems.

In 1963 two students of the Technical University of Berlin, Ingo Rechenberg

and Hans-Paul Schwefel, were working on the search for the optimal shapes of

bodies in a flow. In their work, they used the wind tunnel of the Institute of Flow

Engineering. Because it was then a matter of laborious intuitive experimenta-

tion, they decided to try random changes in the parameters defining the shape

following the example of natural mutation. As a result, the evolution strategy

was born (Rechenberg, 1965; Schwefel, 1981).

Evolution strategies were developed as an alternative to the engineer’s

intuition. Until recently, evolution strategies were used in technical optimisa-

tion problems when no analytical objective function was available, and no

conventional optimisation method existed, thus engineers had to rely only on

their intuition.

Unlike GAs, evolution strategies use only a mutation operator.

How do we implement an evolution strategy?

In its simplest form, termed as a ð1 þ 1Þ-evolution strategy, one parent generates

one offspring per generation by applying normally distributed mutation. The

ð1 þ 1Þ-evolution strategy can be implemented as follows:

Step 1: Choose the number of parameters N to represent the problem, and

then determine a feasible range for each parameter:

fx1min; x1maxg; fx2min; x2maxg; . . . ; fxNmin; xNmaxg;
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Define a standard deviation for each parameter and the function to be

optimised.

Step 2: Randomly select an initial value for each parameter from the respective

feasible range. The set of these parameters will constitute the initial

population of parent parameters:

x1; x2; . . . ; xN

Step 3: Calculate the solution associated with the parent parameters:

X ¼ f ðx1; x2; . . . ; xNÞ

Step 4: Create a new (offspring) parameter by adding a normally distributed

random variable a with mean zero and pre-selected deviation � to each

parent parameter:

x0
i ¼ xi þ að0; �Þ; i ¼ 1;2; . . . ;N ð7:7Þ

Normally distributed mutations with mean zero reflect the natural

process of evolution where smaller changes occur more frequently than

larger ones.

Step 5: Calculate the solution associated with the offspring parameters:

X0 ¼ f ðx0
1; x

0
2; . . . ; x

0
NÞ

Step 6: Compare the solution associated with the offspring parameters with

the one associated with the parent parameters. If the solution for the

offspring is better than that for the parents, replace the parent popula-

tion with the offspring population. Otherwise, keep the parent

parameters.

Step 7: Go to Step 4, and repeat the process until a satisfactory solution is

reached, or a specified number of generations is considered.

The ð1 þ 1Þ-evolution strategy can be represented as a block-diagram shown

in Figure 7.13.

Why do we vary all the parameters simultaneously when generating a

new solution?

An evolution strategy here reflects the nature of a chromosome. In fact, a single

gene may simultaneously affect several characteristics of the living organism. On

the other hand, a single characteristic of an individual may be determined by the

simultaneous interactions of several genes. The natural selection acts on a

collection of genes, not on a single gene in isolation.

Evolution strategies can solve a wide range of constrained and unconstrained

non-linear optimisation problems and produce better results than many conven-

tional, highly complex, non-linear optimisation techniques (Schwefel, 1995).

Experiments also suggest that the simplest version of evolution strategies that

uses a single parent – single offspring search works best.
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What are the differences between genetic algorithms and evolution

strategies?

The principal difference between a GA and an evolution strategy is that the

former uses both crossover and mutation whereas the latter uses only mutation.

In addition, when we use an evolution strategy we do not need to represent the

problem in a coded form.

Figure 7.13 Block-diagram of the ð1 þ 1Þ-evolution strategy
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Which method works best?

An evolution strategy uses a purely numerical optimisation procedure, similar to

a focused Monte Carlo search. GAs are capable of more general applications,

but the hardest part of applying a GA is coding the problem. In general, to

answer the question as to which method works best, we have to experiment

to find out. It is application-dependent.

7.7 Genetic programming

One of the central problems in computer science is how to make computers

solve problems without being explicitly programmed to do so. Genetic program-

ming offers a solution through the evolution of computer programs by methods

of natural selection. In fact, genetic programming is an extension of the

conventional genetic algorithm, but the goal of genetic programming is not just

to evolve a bit-string representation of some problem but the computer code that

solves the problem. In other words, genetic programming creates computer

programs as the solution, while GAs create a string of binary numbers that

represent the solution.

Genetic programming is a recent development in the area of evolutionary

computation. It was greatly stimulated in the 1990s by John Koza (Koza, 1992,

1994).

How does genetic programming work?

According to Koza, genetic programming searches the space of possible com-

puter programs for a program that is highly fit for solving the problem at hand

(Koza, 1992).

Any computer program is a sequence of operations (functions) applied to

values (arguments), but different programming languages may include different

types of statements and operations, and have different syntactic restrictions.

Since genetic programming manipulates programs by applying genetic opera-

tors, a programming language should permit a computer program to be

manipulated as data and the newly created data to be executed as a program.

For these reasons, LISP was chosen as the main language for genetic program-

ming (Koza, 1992).

What is LISP?

LISP, or List Processor, is one of the oldest high-level programming languages

(FORTRAN is just two years older than LISP). LISP, which was written by John

McCarthy in the late 1950s, has become one of the standard languages for

artificial intelligence.

LISP has a highly symbol-oriented structure. Its basic data structures are

atoms and lists. An atom is the smallest indivisible element of the LISP syntax.

The number 21, the symbol X and the string ‘This is a string’ are examples of LISP

atoms. A list is an object composed of atoms and/or other lists. LISP lists are
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written as an ordered collection of items inside a pair of parentheses. For

example, the list

(�(
 A B) C)

calls for the application of the subtraction function ð�Þ to two arguments,

namely the list (
A B) and the atom C. First, LISP applies the multiplication

function ð
Þ to the atoms A and B. Once the list (
A B) is evaluated, LISP applies

the subtraction function ð�Þ to the two arguments, and thus evaluates the entire

list (�(
A B) C).

Both atoms and lists are called symbolic expressions or S-expressions. In LISP,

all data and all programs are S-expressions. This gives LISP the ability to operate

on programs as if they were data. In other words, LISP programs can modify

themselves or even write other LISP programs. This remarkable property of LISP

makes it very attractive for genetic programming.

Any LISP S-expression can be depicted as a rooted point-labelled tree with

ordered branches. Figure 7.14 shows the tree corresponding to the S-expression

(�(
A B) C). This tree has five points, each of which represents either a function

or a terminal. The two internal points of the tree are labelled with functions ð�Þ
and ð
Þ. Note that the root of the tree is the function appearing just inside the

leftmost opening parenthesis of the S-expression. The three external points of

the tree, also called leaves, are labelled with terminals A, B and C. In the

graphical representation, the branches are ordered because the order of

the arguments in many functions directly affects the results.

How do we apply genetic programming to a problem?

Before applying genetic programming to a problem, we must accomplish five

preparatory steps (Koza, 1994):

1 Determine the set of terminals.

2 Select the set of primitive functions.

3 Define the fitness function.

4 Decide on the parameters for controlling the run.

5 Choose the method for designating a result of the run.

Figure 7.14 Graphical representation of the LISP S-expression (�(
 A B) C)
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The Pythagorean Theorem helps us to illustrate these preparatory steps and

demonstrate the potential of genetic programming. The theorem says that the

hypotenuse, c, of a right triangle with short sides a and b is given by

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
:

The aim of genetic programming is to discover a program that matches this

function. To measure the performance of the as-yet-undiscovered computer

program, we will use a number of different fitness cases. The fitness cases for

the Pythagorean Theorem are represented by the samples of right triangles in

Table 7.3. These fitness cases are chosen at random over a range of values of

variables a and b.

Step 1: Determine the set of terminals

The terminals correspond to the inputs of the computer program to be

discovered. Our program takes two inputs, a and b.

Step 2: Select the set of primitive functions

The functions can be presented by standard arithmetic operations,

standard programming operations, standard mathematical functions,

logical functions or domain-specific functions. Our program will use

four standard arithmetic operations þ, �, 
 and /, and one mathema-

tical function sqrt.

Terminals and primitive functions together constitute the building

blocks from which genetic programming constructs a computer

program to solve the problem.

Step 3: Define the fitness function

A fitness function evaluates how well a particular computer program

can solve the problem. The choice of the fitness function depends on

the problem, and may vary greatly from one problem to the next. For

our problem, the fitness of the computer program can be measured by

the error between the actual result produced by the program and the

correct result given by the fitness case. Typically, the error is not

measured over just one fitness case, but instead calculated as a sum of

the absolute errors over a number of fitness cases. The closer this sum is

to zero, the better the computer program.

Table 7.3 Ten fitness cases for the Pythagorean Theorem

Side a Side b Hypotenuse c Side a Side b Hypotenuse c

3 5 5.830952 12 10 15.620499

8 14 16.124515 21 6 21.840330

18 2 18.110770 7 4 8.062258

32 11 33.837849 16 24 28.844410

4 3 5.000000 2 9 9.219545
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Step 4: Decide on the parameters for controlling the run

For controlling a run, genetic programming uses the same primary

parameters as those used for GAs. They include the population size and

the maximum number of generations to be run.

Step 5: Choose the method for designating a result of the run

It is common practice in genetic programming to designate the best-so-

far generated program as the result of a run.

Once these five steps are complete, a run can be made. The run of genetic

programming starts with a random generation of an initial population of

computer programs. Each program is composed of functions þ, �, 
, / and sqrt,

and terminals a and b.

In the initial population, all computer programs usually have poor fitness, but

some individuals are more fit than others. Just as a fitter chromosome is more

likely to be selected for reproduction, so a fitter computer program is more likely

to survive by copying itself into the next generation.

Is the crossover operator capable of operating on computer programs?

In genetic programming, the crossover operator operates on two computer

programs which are selected on the basis of their fitness. These programs can

have different sizes and shapes. The two offspring programs are composed by

recombining randomly chosen parts of their parents. For example, consider the

following two LISP S-expressions:

(/ (� (sqrt (þ (
 a a) (� a b))) a) (
 a b)),

which is equivalent to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ða � bÞ

p
� a

ab
;

and

(þ (� (sqrt (� (
 b b) a)) b) (sqrt (/ a b))),

which is equivalent to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � a

p
� b


 �
þ

ffiffiffi
a

b

r
:

These two S-expressions can be presented as rooted, point-labelled trees with

ordered branches as shown in Figure 7.15(a). Internal points of the trees

correspond to functions and external points correspond to terminals.

Any point, internal or external, can be chosen as a crossover point. Suppose

that the crossover point for the first parent is the function ð
Þ, and the crossover
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point for the second parent is the function sqrt. As a result, we obtain the two

crossover fragments rooted at the chosen crossover points as shown in Figure

7.15(a). The crossover operator creates two offspring by exchanging the cross-

over fragments of two parents. Thus, the first offspring is created by inserting the

crossover fragment of the second parent into the place of the crossover fragment

of the first parent. Similarly, the second offspring is created by inserting the

crossover fragment of the first parent into the place of the crossover fragment of

Figure 7.15 Crossover in genetic programming: (a) two parental S-expressions;

(b) two offspring S-expressions
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the second parent. The two offspring resulting from crossover of the two parents

are shown in Figure 7.15(b). These offspring are equivalent to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ ða � bÞ

p
� affiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � a
p and ðab � bÞ þ

ffiffiffi
a

b

r
:

The crossover operator produces valid offspring computer programs regardless

of the choice of crossover points.

Is mutation used in genetic programming?

A mutation operator can randomly change any function or any terminal in the

LISP S-expression. Under mutation, a function can only be replaced by a

function and a terminal can only be replaced by a terminal. Figure 7.16 explains

the basic concept of mutation in genetic programming.

In summary, genetic programming creates computer programs by executing

the following steps (Koza, 1994):

Step 1: Assign the maximum number of generations to be run and probabil-

ities for cloning, crossover and mutation. Note that the sum of the

probability of cloning, the probability of crossover and the probability

of mutation must be equal to one.

Step 2: Generate an initial population of computer programs of size N by

combining randomly selected functions and terminals.

Step 3: Execute each computer program in the population and calculate its

fitness with an appropriate fitness function. Designate the best-so-far

individual as the result of the run.

Step 4: With the assigned probabilities, select a genetic operator to perform

cloning, crossover or mutation.

Step 5: If the cloning operator is chosen, select one computer program from

the current population of programs and copy it into a new population.

If the crossover operator is chosen, select a pair of computer pro-

grams from the current population, create a pair of offspring programs

and place them into the new population.

If the mutation operator is chosen, select one computer program

from the current population, perform mutation and place the mutant

into the new population.

All programs are selected with a probability based on their fitness

(i.e., the higher the fitness, the more likely the program is to be

selected).

Step 6: Repeat Step 4 until the size of the new population of computer

programs becomes equal to the size of the initial population, N.
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Step 7: Replace the current (parent) population with the new (offspring)

population.

Step 8: Go to Step 3 and repeat the process until the termination criterion is

satisfied.

Figure 7.17 is a flowchart representing the above steps of genetic programming.

Figure 7.16 Mutation in genetic programming: (a) original S-expressions;

(b) mutated S-expressions
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Figure 7.17 Flowchart for genetic programming
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Let us now return to the Pythagorean Theorem. Figure 7.18 shows the fitness

history of the best S-expression in a population of 500 computer programs.

As you can see, in the randomly generated initial population, even the best

S-expression has very poor fitness. But fitness improves very rapidly, and at the

fourth generation the correct S-expression is reproduced. This simple example

demonstrates that genetic programming offers a general and robust method of

evolving computer programs.

In the Pythagorean Theorem example, we used LISP S-expressions but there is

no reason to restrict genetic programming only to LISP S-expressions. It can also

be implemented in C, C++, Pascal, FORTRAN, Mathematica, Smalltalk and other

programming languages, and can be applied more generally.

What are the main advantages of genetic programming compared to

genetic algorithms?

Genetic programming applies the same evolutionary approach as a GA does.

However, genetic programming is no longer breeding bit strings that represent

coded solutions but complete computer programs that solve a particular prob-

lem. The fundamental difficulty of GAs lies in the problem representation, that

is, in the fixed-length coding. A poor representation limits the power of a GA,

and even worse, may lead to a false solution.

A fixed-length coding is rather artificial. As it cannot provide a dynamic

variability in length, such a coding often causes considerable redundancy and

reduces the efficiency of genetic search. In contrast, genetic programming uses

high-level building blocks of variable length. Their size and complexity can

change during breeding. Genetic programming works well in a large number of

different cases (Koza, 1994) and has many potential applications.

Are there any difficulties?

Despite many successful applications, there is still no proof that genetic program-

ming will scale up to more complex problems that require larger computer

programs. And even if it scales up, extensive computer run times may be needed.

Figure 7.18 Fitness history of the best S-expression
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7.8 Summary

In this chapter, we presented an overview of evolutionary computation. We

considered genetic algorithms, evolution strategies and genetic programming.

We introduced the main steps in developing a genetic algorithm, discussed why

genetic algorithms work, and illustrated the theory through actual applications

of genetic algorithms. Then we presented a basic concept of evolutionary

strategies and determined the differences between evolutionary strategies and

genetic algorithms. Finally, we considered genetic programming and its applica-

tion to real problems.

The most important lessons learned in this chapter are:

. The evolutionary approach to artificial intelligence is based on the computa-

tional models of natural selection and genetics known as evolutionary

computation. Evolutionary computation combines genetic algorithms, evolu-

tion strategies and genetic programming.

. All methods of evolutionary computation work as follows: create a population

of individuals, evaluate their fitness, generate a new population by applying

genetic operators, and repeat this process a number of times.

. Genetic algorithms were invented by John Holland in the early 1970s.

Holland’s genetic algorithm is a sequence of procedural steps for moving

from one generation of artificial ‘chromosomes’ to another. It uses ‘natural’

selection and genetics-inspired techniques known as crossover and mutation.

Each chromosome consists of a number of ‘genes’, and each gene is repres-

ented by 0 or 1.

. Genetic algorithms use fitness values of individual chromosomes to carry out

reproduction. As reproduction takes place, the crossover operator exchanges

parts of two single chromosomes, and the mutation operator changes the

gene value in some randomly chosen location of the chromosome. After a

number of successive reproductions, the less fit chromosomes become

extinct, while those best fit gradually come to dominate the population.

. Genetic algorithms work by discovering and recombining schemata – good

‘building blocks’ of candidate solutions. The genetic algorithm does not need

knowledge of the problem domain, but it requires the fitness function to

evaluate the fitness of a solution.

. Solving a problem using genetic algorithms involves defining constraints and

optimum criteria, encoding the problem solutions as chromosomes, defining

a fitness function to evaluate a chromosome’s performance, and creating

appropriate crossover and mutation operators.

. Genetic algorithms are a very powerful tool. However, coding the problem as

a bit string may change the nature of the problem being investigated. There is

always a danger that the coded representation represents a problem that is

different from the one we want to solve.
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. Evolution strategies were developed by Ingo Rechenberg and Hans-Paul

Schwefel in the early 1960s as an alternative to the engineer’s intuition.

Evolution strategies are used in technical optimisation problems when no

analytical objective function is available, and no conventional optimisation

method exists – only the engineer’s intuition.

. An evolution strategy is a purely numerical optimisation procedure that is

similar to a focused Monte Carlo search. Unlike genetic algorithms, evolution

strategies use only a mutation operator. In addition, the representation of a

problem in a coded form is not required.

. Genetic programming is a recent development in the area of evolutionary

computation. It was greatly stimulated in the 1990s by John Koza. Genetic

programming applies the same evolutionary approach as genetic algorithms.

However, genetic programming is no longer breeding bit strings that repres-

ent coded solutions but complete computer programs that solve a problem at

hand.

. Solving a problem by genetic programming involves determining the set of

arguments, selecting the set of functions, defining a fitness function to

evaluate the performance of created computer programs, and choosing the

method for designating a result of the run.

. Since genetic programming manipulates programs by applying genetic

operators, a programming language should permit a computer program to

be manipulated as data and the newly created data to be executed as a

program. For these reasons, LISP was chosen as the main language for genetic

programming.

Questions for review

1 Why are genetic algorithms called genetic? Who was the ‘father’ of genetic algorithms?

2 What are the main steps of a genetic algorithm? Draw a flowchart that implements

these steps. What are termination criteria used in genetic algorithms?

3 What is the roulette wheel selection technique? How does it work? Give an example.

4 How does the crossover operator work? Give an example using fixed-length bit strings.

Give another example using LISP S-expressions.

5 What is mutation? Why is it needed? How does the mutation operator work? Give an

example using fixed-length bit strings. Give another example using LISP S-expressions.

6 Why do genetic algorithms work? What is a schema? Give an example of a schema and

its instances. Explain the relationship between a schema and a chromosome. What is

the Schema Theorem?

7 Describe a typical process of the development of a genetic algorithm for solving a real

problem. What is the fundamental difficulty of genetic algorithms?

8 What is an evolution strategy? How is it implemented? What are the differences

between evolution strategies and genetic algorithms?

255QUESTIONS FOR REVIEW



9 Draw a block-diagram of the ð1 þ 1Þ evolution strategy. Why do we vary all the

parameters simultaneously when generating a new solution?

10 What is genetic programming? How does it work? Why has LISP become the main

language for genetic programming?

11 What is a LISP S-expression? Give an example and represent it as a rooted point-

labelled tree with ordered branches. Show terminals and functions on the tree.

12 What are the main steps in genetic programming? Draw a flowchart that implements

these steps. What are advantages of genetic programming?
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8Hybrid intelligent systems

In which we consider the combination of expert systems, fuzzy

logic, neural networks and evolutionary computation, and discuss

the emergence of hybrid intelligent systems.

8.1 Introduction, or how to combine German mechanics with
Italian love

In previous chapters, we considered several intelligent technologies, including

probabilistic reasoning, fuzzy logic, neural networks and evolutionary computa-

tion. We discussed the strong and weak points of these technologies, and

noticed that in many real-world applications we would need not only to acquire

knowledge from various sources, but also to combine different intelligent

technologies. The need for such a combination has led to the emergence of

hybrid intelligent systems.

A hybrid intelligent system is one that combines at least two intelligent

technologies. For example, combining a neural network with a fuzzy system

results in a hybrid neuro-fuzzy system.

The combination of probabilistic reasoning, fuzzy logic, neural networks and

evolutionary computation forms the core of soft computing (SC), an emerging

approach to building hybrid intelligent systems capable of reasoning and

learning in an uncertain and imprecise environment.

The potential of soft computing was first realised by Lotfi Zadeh, the ‘father’

of fuzzy logic. In March 1991, he established the Berkeley Initiative in Soft

Computing. This group includes students, professors, employees of private and

government organisations, and other individuals interested in soft computing.

The rapid growth of the group suggests that the impact of soft computing on

science and technology will be increasingly felt in coming years.

What do we mean by ‘soft’ computing?

While traditional or ‘hard’ computing uses crisp values, or numbers, soft

computing deals with soft values, or fuzzy sets. Soft computing is capable of

operating with uncertain, imprecise and incomplete information in a manner

that reflects human thinking. In real life, humans normally use soft data



represented by words rather than numbers. Our sensory organs deal with soft

information, our brain makes soft associations and inferences in uncertain and

imprecise environments, and we have a remarkable ability to reason and make

decisions without using numbers. Humans use words, and soft computing

attempts to model our sense of words in decision making.

Can we succeed in solving complex problems using words?

Words are inherently less precise than numbers but precision carries a high cost.

We use words when there is a tolerance for imprecision. Likewise, soft comput-

ing exploits the tolerance for uncertainty and imprecision to achieve greater

tractability and robustness, and lower the cost of solutions (Zadeh, 1996).

We also use words when the available data is not precise enough to use

numbers. This is often the case with complex problems, and while ‘hard’

computing fails to produce any solution, soft computing is still capable of

finding good solutions.

What is the difference between soft computing and artificial intelligence?

Conventional artificial intelligence attempts to express human knowledge in

symbolic terms. Its corner-stones are its rigid theory for symbol manipulation

and its exact reasoning mechanisms, including forward and backward chaining.

The most successful product of conventional artificial intelligence is the expert

system. But an expert system is good only if explicit knowledge is acquired and

represented in the knowledge base. This substantially limits the field of practical

applications for such systems.

However, during the last few years, the domain of artificial intelligence has

expanded rapidly to include artificial neural networks, genetic algorithms and

even fuzzy set theory (Russell and Norvig, 2002). This makes the boundaries

between modern artificial intelligence and soft computing vague and elusive.

The objective of this chapter, however, is not to argue when one becomes part of

the other, but to provide the reader with an understanding of the main

principles of building hybrid intelligent systems.

What exactly are we trying to combine in a hybrid system?

Lotfi Zadeh is reputed to have said that a good hybrid would be ‘British Police,

German Mechanics, French Cuisine, Swiss Banking and Italian Love’. But ‘British

Cuisine, German Police, French Mechanics, Italian Banking and Swiss Love’

would be a bad one. Likewise, a hybrid intelligent system can be good or bad – it

depends on which components constitute the hybrid. So our goal is to select the

right components for building a good hybrid system.

Each component has its own strengths and weaknesses. Probabilistic reasoning

is mainly concerned with uncertainty, fuzzy logic with imprecision, neural

networks with learning, and evolutionary computation with optimisation. Table

8.1 presents a comparison of different intelligent technologies. A good hybrid

system brings the advantages of these technologies together. Their synergy allows

a hybrid system to accommodate common sense, extract knowledge from raw

data, use human-like reasoning mechanisms, deal with uncertainty and impreci-

sion, and learn to adapt to a rapidly changing and unknown environment.
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8.2 Neural expert systems

Expert systems and neural networks, as intelligent technologies, share common

goals. They both attempt to imitate human intelligence and eventually create an

intelligent machine. However, they use very different means to achieve their

goals. While expert systems rely on logical inferences and decision trees and

focus on modelling human reasoning, neural networks rely on parallel data

processing and focus on modelling a human brain. Expert systems treat the brain

as a black-box, whereas neural networks look at its structure and functions,

particularly at its ability to learn. These fundamental differences are reflected in

the knowledge representation and data processing techniques used in expert

systems and neural networks.

Knowledge in a rule-based expert system is represented by IF-THEN produc-

tion rules collected by observing or interviewing human experts. This task, called

knowledge acquisition, is difficult and expensive. In addition, once the rules are

stored in the knowledge base, they cannot be modified by the expert system

itself. Expert systems cannot learn from experience or adapt to new environ-

ments. Only a human can manually modify the knowledge base by adding,

changing or deleting some rules.

Knowledge in neural networks is stored as synaptic weights between neurons.

This knowledge is obtained during the learning phase when a training set of data

is presented to the network. The network propagates the input data from layer to

layer until the output data is generated. If it is different from the desired output,

an error is calculated and propagated backwards through the network. The

synaptic weights are modified as the error is propagated. Unlike expert systems,

neural networks learn without human intervention.

However, in expert systems, knowledge can be divided into individual rules

and the user can see and understand the piece of knowledge applied by the

system. In contrast, in neural networks, one cannot select a single synaptic

weight as a discrete piece of knowledge. Here knowledge is embedded in the

Table 8.1 Comparison of expert systems (ES), fuzzy systems (FS), neural networks (NN)

and genetic algorithms (GA)

ES FS NN GA

Knowledge representation * * & &

Uncertainty tolerance * * * *

Imprecision tolerance & * * *

Adaptability & & * *

Learning ability & & * *

Explanation ability * * & &

Knowledge discovery and data mining & & * *
Maintainability & * * *

The terms used for grading are: & bad, & rather bad, * rather good and * good

261NEURAL EXPERT SYSTEMS



entire network; it cannot be broken into individual pieces, and any change of a

synaptic weight may lead to unpredictable results. A neural network is, in fact,

a black-box for its user.

An expert system cannot learn, but can explain how it arrives at a particular

solution. A neural network can learn, but acts as a black-box. Thus by combining

the advantages of each technology we can create a more powerful and effective

expert system. A hybrid system that combines a neural network and a rule-based

expert system is called a neural expert system (or a connectionist expert

system). Learning, generalisation, robustness and parallel information proces-

sing make neural networks a ‘right’ component for building a new breed of

expert systems.

Figure 8.1 shows the basic structure of a neural expert system. Unlike a rule-

based expert system, the knowledge base in the neural expert system is

represented by a trained neural network.

A neural expert system can extract IF-THEN rules from the neural network,

which enables it to justify and explain its conclusion.

The heart of a neural expert system is the inference engine. This controls the

information flow in the system and initiates inference over the neural knowl-

edge base. A neural inference engine also ensures approximate reasoning.

What is approximate reasoning?

In a rule-based expert system, the inference engine compares the condition part

of each rule with data given in the database. When the IF part of the rule

matches the data in the database, the rule is fired and its THEN part is executed.

Figure 8.1 Basic structure of a neural expert system
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In rule-based expert systems, the precise matching is required. As a result, the

inference engine cannot cope with noisy or incomplete data.

Neural expert systems use a trained neural network in place of the knowledge

base. The neural network is capable of generalisation. In other words, the new

input data does not have to precisely match the data that was used in network

training. This allows neural expert systems to deal with noisy and incomplete

data. This ability is called approximate reasoning.

The rule extraction unit examines the neural knowledge base and produces

the rules implicitly ‘buried’ in the trained neural network.

The explanation facilities explain to the user how the neural expert system

arrives at a particular solution when working with the new input data.

The user interface provides the means of communication between the user

and the neural expert system.

How does a neural expert system extract rules that justify its inference?

Neurons in the network are connected by links, each of which has a numerical

weight attached to it. The weights in a trained neural network determine the

strength or importance of the associated neuron inputs; this characteristic is used

for extracting rules (Gallant, 1993; Nikolopoulos, 1997; Sestito and Dillon, 1991).

Let us consider a simple example to illustrate how a neural expert system

works. This example is an object classification problem. The object to be

classified belongs to either birds, planes or gliders. A neural network used for

this problem is shown in Figure 8.2. It is a three-layer network fully connected

between the first and the second layers. All neurons are labelled according to the

concepts they represent.

The first layer is the input layer. Neurons in the input layer simply transmit

external signals to the next layer. The second layer is the conjunction layer. The

neurons in this layer apply a sign activation function given by

Ysign ¼
þ1; if X50

�1; if X < 0

�
; ð8:1Þ

where X is the net weighted input to the neuron,

X ¼
Xn

i¼1

xiwi;

xi and wi are the value of input i and its weight, respectively, and n is the number

of neuron inputs.

The third layer is the output layer. In our example, each output neuron

receives an input from a single conjunction neuron. The weights between the

second and the third layers are set to unity.

You might notice that IF-THEN rules are mapped quite naturally into a

three-layer neural network where the third (disjunction) layer represents the

consequent parts of the rules. Furthermore, the strength of a given rule, or its
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certainty factor, can be associated with the weight between respective conjunc-

tion and disjunction neurons (Fu, 1993; Kasabov, 1996). We will discuss specific

aspects of mapping rules into a neural network later, but now we shall return to

our example.

The neural knowledge base was trained with a set of training examples;

Figure 8.2 shows the actual numerical weights obtained between the first and the

second layers. If we now set each input of the input layer to either þ1 (true), �1

(false), or 0 (unknown), we can give a semantic interpretation for the activation

of any output neuron. For example, if the object has Wings ðþ1Þ, Beak ðþ1Þ and

Feathers ðþ1Þ, but does not have Engine ð�1Þ, then we can conclude that this

object is Bird ðþ1Þ:

XRule1 ¼ 1 � ð�0:8Þ þ 0 � ð�0:2Þ þ 1 � 2:2 þ 1 � 2:8 þ ð�1Þ � ð�1:1Þ
¼ 5:3 > 0;

YRule1 ¼ YBird ¼ þ1:

We can similarly conclude that this object is not Plane,

XRule2 ¼ 1 � ð�0:7Þ þ 0 � ð�0:1Þ þ 1 � 0:0 þ 1 � ð�1:6Þ þ ð�1Þ � 1:9

¼ �4:2 < 0;

YRule2 ¼ YPlane ¼ �1:

and not Glider,

XRule3 ¼ 1 � ð�0:6Þ þ 0 � ð�1:1Þ þ 1 � ð�1:0Þ þ 1 � ð�2:9Þ þ ð�1Þ � ð�1:3Þ
¼ �4:2 < 0;

YRule3 ¼ YGlider ¼ �1:

Figure 8.2 The neural knowledge base
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Now by attaching a corresponding question to each input neuron,

Neuron: Wings Question: Does the object have wings?

Neuron: Tail Question: Does the object have a tail?

Neuron: Beak Question: Does the object have a beak?

Neuron: Feathers Question: Does the object have feathers?

Neuron: Engine Question: Does the object have an engine?

we can enable the system to prompt the user for initial values of the input

variables. The system’s goal is to obtain the most important information first and

to draw a conclusion as quickly as possible.

How does the system know what the most important information is, and

whether it has enough information to draw a conclusion?

The importance of a particular neuron input is determined by the absolute value

of the weight attached to this input. For example, for neuron Rule 1, the input

Feathers has a much greater importance than the input Wings. Thus, we might

establish the following dialogue with the system:

PURSUING:

> Bird

ENTER INITIAL VALUE FOR THE INPUT FEATHERS:

> þ1

Our task now is to see whether the acquired information is sufficient to draw a

conclusion. The following heuristic can be applied here (Gallant, 1993):

An inference can be made if the known net weighted input to a neuron is

greater than the sum of the absolute values of the weights of the unknown

inputs.

This heuristic can be expressed mathematically as follows:

Xn

i¼1

xiwi >
Xn

j¼1

jwjj ð8:2Þ

where i 2 KNOWN, j 62 KNOWN and n is the number of neuron inputs.

In our example, when the input Feathers becomes known, we obtain

KNOWN ¼ 1 � 2:8 ¼ 2:8

UNKNOWN ¼ j � 0:8j þ j � 0:2j þ j2:2j þ j � 1:1j ¼ 4:3

KNOWN < UNKNOWN

Thus, the inference for neuron Rule 1 cannot be made yet, and the user is asked

to provide a value for the next most important input, input Beak:

ENTER INITIAL VALUE FOR THE INPUT BEAK:

> þ1
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Now we have

KNOWN ¼ 1 � 2:8 þ 1 � 2:2 ¼ 5:0

UNKNOWN ¼ j � 0:8j þ j � 0:2j þ j � 1:1j ¼ 2:1

KNOWN > UNKNOWN

And thus, according to the heuristic (8.2), the following inference can be made:

CONCLUDE: BIRD IS TRUE

While KNOWN gives the acquired net weighted input to neuron Rule 1,

UNKNOWN indicates how this net input might change based upon the worst

possible combination of values of the unknown inputs. In our example, the net

weighted input cannot change more than 
2:1. Therefore, the output of neuron

Rule 1 will be greater than 0 regardless of the values of the known inputs, and we

can make the inference that Bird must be true.

Now it is time to examine how a single rule can be extracted to justify an

inference. We will use a simple algorithm concerned only with neurons directly

connected to the neuron in question (Gallant, 1988). Let us again consider the

example shown in Figure 8.2 and justify the inference that Bird is true. Because

all neurons in the first layer are directly connected to neuron Rule 1, we might

expect that the rule to be extracted may involve all five neurons – Wings, Tail,

Beak, Feathers and Engine.

First, we determine all contributing inputs and the size of each contribution

(Gallant, 1993). An input i is considered to be contributing if it does not move

the net weighted input in the opposite direction. The size of this contribution is

determined by the absolute value of the weight jwij of the contributing input i.

Now we arrange all contributing inputs according to their sizes in a descend-

ing order. In our example, the list of inputs contributing to the inference Bird is

true looks as follows:

Input: Feathers Size: 2.8

Input: Beak Size: 2.2

Input: Engine Size: 1.1

Input: Tail Size: 0.2

This list enables us to create a rule in which the condition part is represented by

the contributing input with the largest contribution:

IF Feathers is true

THEN Bird is true

The next step is to verify this rule. In other words, we need to make sure that the

rule passes the validity test. It can be done by applying the heuristic (8.2):

KNOWN ¼ 1 � 2:8 ¼ 2:8

UNKNOWN ¼ j � 0:8j þ j � 0:2j þ j2:2j þ j � 1:1j ¼ 4:3

KNOWN < UNKNOWN
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The rule is not valid yet, and thus we need to add the ‘second best’ contributing

input as a clause in the condition part of our rule:

IF Feathers is true

AND Beak is true

THEN Bird is true

Now we have:

KNOWN ¼ 1 � 2:8 þ 1 � 2:2 ¼ 5:0

UNKNOWN ¼ j � 0:8j þ j � 0:2j þ j � 1:1j ¼ 2:1

KNOWN > UNKNOWN

This rule has passed the validity test. It is also a maximally general rule, that is a

removal of any condition clause results in an invalid rule.

Similarly, we can obtain rules to justify the inferences that Plane is false, and

Glider is false:

IF Engine is false

AND Feathers is true

THEN Plane is false

IF Feathers is true

AND Wings is true

THEN Glider is false

This example also illustrates that the neural expert system can make useful

deductions even when the data is incomplete (for instance, Tail is unknown in

our example).

In our example, we assume that the neural expert system has a properly

trained neural knowledge base. In the real world, however, the training data is

not always adequate. We also assume that we do not have any prior knowledge

about the problem domain. In fact, we might have some knowledge, although

not often perfect. Can we determine an initial structure of the neural knowledge

base by using domain knowledge, train it with a given set of training data, and

then interpret the trained neural network as a set of IF-THEN rules?

As we mentioned before, a set of IF-THEN rules that represent domain

knowledge can be mapped into a multi-layer neural network. Figure 8.3 illus-

trates a set of rules mapped into a five-layer neural network. The weights between

conjunction and disjunction layers indicate the strengths of the rules, and thus

can be regarded as certainty factors of the associated rules.

As soon as we have established the initial structure of the neural knowledge

base, we can train the network according to a given set of training data. This

can be done by using an appropriate training algorithm such as back-

propagation. When the training phase is completed, we can examine the neural

network knowledge base, extract and, if necessary, refine the set of initial
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IF-THEN rules. Thus, neural expert systems can use domain knowledge repres-

ented as IF-THEN rules as well as a set of numerical data. In fact, neural

expert systems provide a bi-directional link between neural networks and rule-

based systems.

Unfortunately, neural expert systems still suffer from the limitations of

Boolean logic, and any attempt to represent continuous input variables may

lead to an infinite increase in the number of rules. This might significantly limit

the area of application for neural expert systems. The natural way of overcoming

this limitation is to use fuzzy logic.

8.3 Neuro-fuzzy systems

Fuzzy logic and neural networks are natural complementary tools in build-

ing intelligent systems. While neural networks are low-level computational

Figure 8.3 An example of a multi-layer knowledge base
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structures that perform well when dealing with raw data, fuzzy logic deals with

reasoning on a higher level, using linguistic information acquired from domain

experts. However, fuzzy systems lack the ability to learn and cannot adjust

themselves to a new environment. On the other hand, although neural networks

can learn, they are opaque to the user. The merger of a neural network with a

fuzzy system into one integrated system therefore offers a promising approach to

building intelligent systems. Integrated neuro-fuzzy systems can combine the

parallel computation and learning abilities of neural networks with the human-

like knowledge representation and explanation abilities of fuzzy systems. As a

result, neural networks become more transparent, while fuzzy systems become

capable of learning.

A neuro-fuzzy system is, in fact, a neural network that is functionally

equivalent to a fuzzy inference model. It can be trained to develop IF-THEN

fuzzy rules and determine membership functions for input and output variables

of the system. Expert knowledge can be easily incorporated into the structure of

the neuro-fuzzy system. At the same time, the connectionist structure avoids

fuzzy inference, which entails a substantial computational burden.

How does a neuro-fuzzy system look?

The structure of a neuro-fuzzy system is similar to a multi-layer neural network.

In general, a neuro-fuzzy system has input and output layers, and three hidden

layers that represent membership functions and fuzzy rules.

Figure 8.4 shows a Mamdani fuzzy inference model, and Figure 8.5 a neuro-

fuzzy system that corresponds to this model. For simplicity, we assume that

the fuzzy system has two inputs – x1 and x2 – and one output – y. Input x1 is

represented by fuzzy sets A1, A2 and A3; input x2 by fuzzy sets B1, B2 and B3;

and output y by fuzzy sets C1 and C2.

Each layer in the neuro-fuzzy system is associated with a particular step in the

fuzzy inference process.

Layer 1 is the input layer. Each neuron in this layer transmits external crisp

signals directly to the next layer. That is,

y
ð1Þ
i ¼ x

ð1Þ
i ; ð8:3Þ

where x
ð1Þ
i is the input and y

ð1Þ
i is the output of input neuron i in Layer 1.

Layer 2 is the input membership or fuzzification layer. Neurons in this

layer represent fuzzy sets used in the antecedents of fuzzy rules. A fuzzification

neuron receives a crisp input and determines the degree to which this input

belongs to the neuron’s fuzzy set, as follows.

The activation function of a membership neuron is set to the function that

specifies the neuron’s fuzzy set. In the example presented in Figure 8.4, we use

triangular sets. Therefore, the activation functions for the neurons in Layer 2

are set to the triangular membership functions (although fuzzification neurons

may have any of the membership functions normally used in fuzzy systems). A
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Figure 8.4 Mamdani fuzzy inference system
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triangular membership function can be specified by two parameters fa; bg as

follows:

y
ð2Þ
i ¼

0; if x
ð2Þ
i 4 a � b

2

1 � 2jxð2Þ
i � aj
b

; if a � b

2
< x

ð2Þ
i < a þ b

2

0; if x
ð2Þ
i 5 a þ b

2

8>>>>>><
>>>>>>:

ð8:4Þ

where a and b are parameters that control the centre and the width of the

triangle, respectively, x
ð2Þ
i is the input and y

ð2Þ
i is the output of fuzzification

neuron i in Layer 2.

Figure 8.6 illustrates a triangular function and the effect caused by the

variation of parameters a and b. As we can see, the output of a fuzzification

neuron depends not only on its input, but also on the centre, a, and the width, b,

of the triangular activation function. The neuron input may remain constant,

but the output will vary with the change of parameters a and b. In other words,

parameters a and b of the fuzzification neurons can play the same role in a

neuro-fuzzy system as synaptic weights in a neural network.

Layer 3 is the fuzzy rule layer. Each neuron in this layer corresponds to a

single fuzzy rule. A fuzzy rule neuron receives inputs from the fuzzification

neurons that represent fuzzy sets in the rule antecedents. For instance, neuron

R1, which corresponds to Rule 1, receives inputs from neurons A1 and B1.

Figure 8.5 Neuro-fuzzy equivalent system
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In fuzzy systems, if a given rule has multiple antecedents, a fuzzy operator is

used to obtain a single number that represents the result of the antecedent

evaluation. The conjunction of the rule antecedents is evaluated by the fuzzy

operation intersection. The same fuzzy operation can be used to combine

multiple inputs to a fuzzy rule neuron. In a neuro-fuzzy system, intersection can

be implemented by the product operator. Thus, the output of neuron i in Layer 3

is obtained as:

y
ð3Þ
i ¼ x

ð3Þ
1i � x

ð3Þ
2i � . . .� x

ð3Þ
ki ; ð8:5Þ

where x
ð3Þ
1i ; x

ð3Þ
2i ; . . . ; x

ð3Þ
ki are the inputs and y

ð3Þ
i is the output of fuzzy rule neuron i

in Layer 3. For example,

y
ð3Þ
R1 ¼ �A1 � �B1 ¼ �R1

The value of �R1 represents the firing strength of fuzzy rule neuron R1.

The weights between Layer 3 and Layer 4 represent the normalised degrees

of confidence (known as certainty factors) of the corresponding fuzzy rules.

These weights are adjusted during training of a neuro-fuzzy system.

What is the normalised degree of confidence of a fuzzy rule?

Different rules represented in a neuro-fuzzy system may be associated with

different degrees of confidence. In Figure 8.4, an expert may attach the degree of

confidence to each fuzzy IF-THEN rule by setting the corresponding weights

within the range of ½0;1�. During training, however, these weights can change. To

keep them within the specified range, the weights are normalised by dividing their

respective values by the highest weight magnitude obtained at each iteration.

Layer 4 is the output membership layer. Neurons in this layer represent

fuzzy sets used in the consequent of fuzzy rules. An output membership neuron

receives inputs from the corresponding fuzzy rule neurons and combines them

Figure 8.6 Triangular activation functions of the fuzzification neurons: (a) effect of

parameter a; (b) effect of parameter b
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by using the fuzzy operation union. This operation can be implemented by the

probabilistic OR (also known as the algebraic sum). That is,

y
ð4Þ
i ¼ x

ð4Þ
1i � x

ð4Þ
2i � . . .� x

ð4Þ
li ; ð8:6Þ

where x
ð4Þ
1i ; x

ð4Þ
2i ; . . . ; x

ð4Þ
li are the inputs, and y

ð4Þ
i is the output of output member-

ship neuron i in Layer 4. For example,

y
ð4Þ
C1 ¼ �R3 � �R6 ¼ �C1

The value of �C1 represents the integrated firing strength of fuzzy rule neurons

R3 and R6. In fact, firing strengths of neurons in the output membership layer

are combined in the same way as truth values of the fuzzy rules in Figure 8.4.

In the Mamdani fuzzy system, output fuzzy sets are clipped by the truth values

of the corresponding fuzzy rules. In the neuro-fuzzy system, we clip activation

functions of the output membership neurons. For example, the membership

function of neuron C1 is clipped by the integrated firing strength �C1.

Layer 5 is the defuzzification layer. Each neuron in this layer represents a

single output of the neuro-fuzzy system. It takes the output fuzzy sets clipped

by the respective integrated firing strengths and combines them into a single

fuzzy set.

The output of the neuro-fuzzy system is crisp, and thus a combined output

fuzzy set must be defuzzified. Neuro-fuzzy systems can apply standard defuzzi-

fication methods, including the centroid technique. In our example, we will use

the sum-product composition method (Jang et al., 1997), which offers a

computational shortcut for the Mamdani-style inference.

The sum-product composition calculates the crisp output as the weighted

average of the centroids of all output membership functions. For example, the

weighted average of the centroids of the clipped fuzzy sets C1 and C2 is

calculated as,

y ¼ �C1 � aC1 � bC1 þ �C2 � aC2 � bC2

�C1 � bC1 þ �C2 � bC2
; ð8:7Þ

where aC1 and aC2 are the centres, and bC1 and bC2 are the widths of fuzzy sets C1

and C2, respectively.

How does a neuro-fuzzy system learn?

A neuro-fuzzy system is essentially a multi-layer neural network, and thus it can

apply standard learning algorithms developed for neural networks, including

the back-propagation algorithm (Kasabov, 1996; Lin and Lee, 1996; Nauck et al.,

1997; Von Altrock, 1997). When a training input-output example is presented to

the system, the back-propagation algorithm computes the system output and

compares it with the desired output of the training example. The difference (also

called the error) is propagated backwards through the network from the output
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layer to the input layer. The neuron activation functions are modified as

the error is propagated. To determine the necessary modifications, the back-

propagation algorithm differentiates the activation functions of the neurons.

Let us demonstrate how a neuro-fuzzy system works on a simple example.

Figure 8.7 shows the distribution of 100 training patterns in the three-

dimensional input-output space X1 � X2 � Y. Each training pattern here is

determined by three variables: two inputs x1 and x2, and one output y. Input

and output variables are represented by two linguistic values: small (S) and

large (L).

The data set of Figure 8.7 is used for training the five-rule neuro-fuzzy system

shown in Figure 8.8(a). Suppose that fuzzy IF-THEN rules incorporated into the

system structure are supplied by a domain expert. Prior or existing knowledge

can dramatically expedite the system training. Besides, if the quality of training

data is poor, the expert knowledge may be the only way to come to a solution at

all. However, experts do occasionally make mistakes, and thus some rules used in

a neuro-fuzzy system may be false or redundant (for example, in Figure 8.8(a),

either Rule 1 or Rule 2 is wrong because they have exactly the same IF parts,

while their THEN parts are different). Therefore, a neuro-fuzzy system should

also be capable of identifying bad rules.

In Figure 8.8(a), initial weights between Layer 3 and Layer 4 are set to unity.

During training the neuro-fuzzy system uses the back-propagation algorithm to

adjust the weights and to modify input and output membership functions. The

training continues until the sum of squared errors is less than 0.001. As can be

seen from Figure 8.8(b), weight wR2 becomes equal to 0 while other weights

remain high. This indicates that Rule 2 is certainly false and can be removed

without any harm to the neuro-fuzzy system. It leaves the system with four rules

that, as you may notice, represent the behaviour of the Exclusive-OR (XOR)

operation.

Figure 8.7 Training patterns in the three-dimensional input-output space
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The training data used in this example includes a number of ‘bad’ patterns

inconsistent with the XOR operation. However, the neuro-fuzzy system is still

capable of identifying the false rule.

In the XOR example, an expert gives us five fuzzy rules, one of which is

wrong. On top of that, we cannot be sure that the ‘expert’ has not left out a few

rules. What can we do to reduce our dependence on the expert knowledge? Can

a neuro-fuzzy system extract rules directly from numerical data?

Given input and output linguistic values, a neuro-fuzzy system can auto-

matically generate a complete set of fuzzy IF-THEN rules. Figure 8.9 demonstrates

the system created for the XOR example. This system consists of 22 � 2 ¼ 8 rules.

Because expert knowledge is not embodied in the system this time, we set all

initial weights between Layer 3 and Layer 4 to 0.5. After training we can eliminate

all rules whose certainty factors are less than some sufficiently small number, say

0.1. As a result, we obtain the same set of four fuzzy IF-THEN rules that represents

Figure 8.8 Five-rule neuro-fuzzy system for the Exclusive-OR operation:

(a) five-rule system; (b) training for 50 epochs
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the XOR operation. This simple example demonstrates that a neuro-fuzzy system

can indeed extract fuzzy rules directly from numerical data.

The combination of fuzzy logic and neural networks constitutes a powerful

means for designing intelligent systems. Domain knowledge can be put into a

neuro-fuzzy system by human experts in the form of linguistic variables and

fuzzy rules. When a representative set of examples is available, a neuro-fuzzy

system can automatically transform it into a robust set of fuzzy IF-THEN rules,

and thereby reduce our dependence on expert knowledge when building

intelligent systems.

So far we have discussed a neuro-fuzzy system that implements the Mamdani

fuzzy inference model. However, the Sugeno model is by far the most popular

candidate for data-based fuzzy modelling.

Figure 8.9 Eight-rule neuro-fuzzy system for the Exclusive-OR operation:

(a) eight-rule system; (b) training for 50 epochs
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Recently, Roger Jang from the Tsing Hua University, Taiwan, proposed a

neural network that is functionally equal to a Sugeno fuzzy inference model

(Jang, 1993). He called it an Adaptive Neuro-Fuzzy Inference System or ANFIS.

8.4 ANFIS: Adaptive Neuro-Fuzzy Inference System

The Sugeno fuzzy model was proposed for a systematic approach to generating

fuzzy rules from a given input-output data set. A typical Sugeno fuzzy rule can be

expressed in the following form:

IF x1 is A1

AND x2 is A2

. . . . .

AND xm is Am

THEN y ¼ f ðx1; x2; . . . ; xmÞ

where x1; x2; . . . ; xm are input variables; A1;A2; . . . ;Am are fuzzy sets; and y is

either a constant or a linear function of the input variables. When y is a constant,

we obtain a zero-order Sugeno fuzzy model in which the consequent of a rule is

specified by a singleton. When y is a first-order polynomial, i.e.

y ¼ k0 þ k1x1 þ k2x2 þ . . .þ kmxm

we obtain a first-order Sugeno fuzzy model.

Jang’s ANFIS is normally represented by a six-layer feedforward neural

network. Figure 8.10 shows the ANFIS architecture that corresponds to the first-

order Sugeno fuzzy model. For simplicity, we assume that the ANFIS has two

inputs – x1 and x2 – and one output – y. Each input is represented by two fuzzy

Figure 8.10 Adaptive Neuro-Fuzzy Inference System (ANFIS)
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sets, and the output by a first-order polynomial. The ANFIS implements four

rules:

Rule 1: Rule 2:

IF x1 is A1 IF x1 is A2

AND x2 is B1 AND x2 is B2

THEN y ¼ f1 ¼ k10 þ k11x1 þ k12x2 THEN y ¼ f2 ¼ k20 þ k21x1 þ k22x2

Rule 3: Rule 4:

IF x1 is A2 IF x1 is A1

AND x2 is B1 AND x2 is B2

THEN y ¼ f3 ¼ k30 þ k31x1 þ k32x2 THEN y ¼ f4 ¼ k40 þ k41x1 þ k42x2

where x1, x2 are input variables; A1 and A2 are fuzzy sets on the universe of

discourse X1; B1 and B2 are fuzzy sets on the universe of discourse X2; and ki0, ki1

and ki2 is a set of parameters specified for rule i.

Let us now discuss the purpose of each layer in Jang’s ANFIS.

Layer 1 is the input layer. Neurons in this layer simply pass external crisp

signals to Layer 2. That is,

y
ð1Þ
i ¼ x

ð1Þ
i ; ð8:8Þ

where x
ð1Þ
i is the input and y

ð1Þ
i is the output of input neuron i in Layer 1.

Layer 2 is the fuzzification layer. Neurons in this layer perform fuzzification.

In Jang’s model, fuzzification neurons have a bell activation function.

A bell activation function, which has a regular bell shape, is specified as:

y
ð2Þ
i ¼ 1

1 þ x
ð2Þ
i � ai

ci

 !2bi
; ð8:9Þ

where x
ð2Þ
i is the input and y

ð2Þ
i is the output of neuron i in Layer 2; and ai, bi and

ci are parameters that control, respectively, the centre, width and slope of the

bell activation function of neuron i.

Layer 3 is the rule layer. Each neuron in this layer corresponds to a single

Sugeno-type fuzzy rule. A rule neuron receives inputs from the respective

fuzzification neurons and calculates the firing strength of the rule it represents.

In an ANFIS, the conjunction of the rule antecedents is evaluated by the operator

product. Thus, the output of neuron i in Layer 3 is obtained as,

y
ð3Þ
i ¼

Yk

j¼1

x
ð3Þ
ji ; ð8:10Þ

where x
ð3Þ
ji are the inputs and y

ð3Þ
i is the output of rule neuron i in Layer 3.
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For example,

y
ð3Þ
�1 ¼ �A1 � �B1 ¼ �1;

where the value of �1 represents the firing strength, or the truth value, of Rule 1.

Layer 4 is the normalisation layer. Each neuron in this layer receives inputs

from all neurons in the rule layer, and calculates the normalised firing strength

of a given rule.

The normalised firing strength is the ratio of the firing strength of a given rule

to the sum of firing strengths of all rules. It represents the contribution of a given

rule to the final result.

Thus, the output of neuron i in Layer 4 is determined as,

y
ð4Þ
i ¼ x

ð4Þ
ii

Xn

j¼1

x
ð4Þ
ji

¼ �i

Xn

j¼1

�j

¼ ���i; ð8:11Þ

where x
ð4Þ
ji is the input from neuron j located in Layer 3 to neuron i in Layer 4,

and n is the total number of rule neurons. For example,

y
ð4Þ
N1 ¼ �1

�1 þ �2 þ �3 þ �4
¼ ���1

Layer 5 is the defuzzification layer. Each neuron in this layer is connected to

the respective normalisation neuron, and also receives initial inputs, x1 and x2.

A defuzzification neuron calculates the weighted consequent value of a given

rule as,

y
ð5Þ
i ¼ x

ð5Þ
i ½ ki0 þ ki1x1 þ ki2x2 � ¼ ���i½ ki0 þ ki1x1 þ ki2x2 �; ð8:12Þ

where x
ð5Þ
i is the input and y

ð5Þ
i is the output of defuzzification neuron i in

Layer 5, and ki0, ki1 and ki2 is a set of consequent parameters of rule i.

Layer 6 is represented by a single summation neuron. This neuron calculates

the sum of outputs of all defuzzification neurons and produces the overall ANFIS

output, y,

y ¼
Xn

i¼1

x
ð6Þ
i ¼

Xn

i¼1

���i½ ki0 þ ki1x1 þ ki2x2 � ð8:13Þ

Thus, the ANFIS shown in Figure 8.10 is indeed functionally equivalent to a first-

order Sugeno fuzzy model.

However, it is often difficult or even impossible to specify a rule consequent

in a polynomial form. Conveniently, it is not necessary to have any prior

knowledge of rule consequent parameters for an ANFIS to deal with a problem.

An ANFIS learns these parameters and tunes membership functions.
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How does an ANFIS learn?

An ANFIS uses a hybrid learning algorithm that combines the least-squares

estimator and the gradient descent method (Jang, 1993). First, initial activation

functions are assigned to each membership neuron. The function centres of the

neurons connected to input xi are set so that the domain of xi is divided equally,

and the widths and slopes are set to allow sufficient overlapping of the respective

functions.

In the ANFIS training algorithm, each epoch is composed from a forward pass

and a backward pass. In the forward pass, a training set of input patterns (an

input vector) is presented to the ANFIS, neuron outputs are calculated on the

layer-by-layer basis, and rule consequent parameters are identified by the least-

squares estimator. In the Sugeno-style fuzzy inference, an output, y, is a linear

function. Thus, given the values of the membership parameters and a training

set of P input-output patterns, we can form P linear equations in terms of the

consequent parameters as:

ydð1Þ ¼ ���1ð1Þf1ð1Þ þ ���2ð1Þf2ð1Þ þ . . .þ ���nð1Þfnð1Þ

ydð2Þ ¼ ���1ð2Þf1ð2Þ þ ���2ð2Þf2ð2Þ þ . . .þ ���nð2Þfnð2Þ
..
.

ydðpÞ ¼ ���1ðpÞf1ðpÞ þ ���2ðpÞf2ðpÞ þ . . .þ ���nðpÞfnðpÞ
..
.

ydðPÞ ¼ ���1ðPÞf1ðPÞ þ ���2ðPÞf2ðPÞ þ . . .þ ���nðPÞfnðPÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð8:14Þ

or

ydð1Þ ¼���1ð1Þ½ k10 þ k11x1ð1Þ þ k12x2ð1Þ þ . . .þ k1mxmð1Þ�

þ ���2ð1Þ½ k20 þ k21x1ð1Þ þ k22x2ð1Þ þ . . .þ k2mxmð1Þ� þ . . .

þ ���nð1Þ½ kn0 þ kn1x1ð1Þ þ kn2x2ð1Þ þ . . .þ knmxmð1Þ�

ydð2Þ ¼���1ð2Þ½ k10 þ k11x1ð2Þ þ k12x2ð2Þ þ . . .þ k1mxmð2Þ�

þ ���2ð2Þ½ k20 þ k21x1ð2Þ þ k22x2ð2Þ þ . . .þ k2mxmð2Þ� þ . . .

þ ���nð2Þ½ kn0 þ kn1x1ð2Þ þ kn2x2ð2Þ þ . . .þ knmxmð2Þ�
..
.

ydðpÞ ¼���1ðpÞ½ k10 þ k11x1ðpÞ þ k12x2ðpÞ þ . . .þ k1mxmðpÞ�

þ ���2ðpÞ½ k20 þ k21x1ðpÞ þ k22x2ðpÞ þ . . .þ k2mxmðpÞ� þ . . .

þ ���nðpÞ½ kn0 þ kn1x1ðpÞ þ kn2x2ðpÞ þ . . .þ knmxmðpÞ�
..
.

ydðPÞ ¼���1ðPÞ½ k10 þ k11x1ðPÞ þ k12x2ðPÞ þ . . .þ k1mxmðPÞ�

þ ���2ðPÞ½ k20 þ k21x1ðPÞ þ k22x2ðPÞ þ . . .þ k2mxmðPÞ� þ . . .

þ ���nðPÞ½ kn0 þ kn1x1ðPÞ þ kn2x2ðPÞ þ . . .þ knmxmðPÞ�

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð8:15Þ
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where m is the number of input variables, n is the number of neurons in the rule

layer, and ydðpÞ is the desired overall output of the ANFIS when inputs x1ðpÞ,
x2ðpÞ, . . . ; xmðpÞ are presented to it.

In the matrix notation, we have

yd ¼ A k; ð8:16Þ

where yd is a P � 1 desired output vector,

yd ¼

ydð1Þ
ydð2Þ
..
.

ydðpÞ
..
.

ydðPÞ

2
66666666664

3
77777777775

A is a P � nð1 þ mÞ matrix,

A¼

���1ð1Þ ���1ð1Þx1ð1Þ � � � ���1ð1Þxmð1Þ � � � ���nð1Þ ���nð1Þx1ð1Þ � � � ���nð1Þxmð1Þ
���1ð2Þ ���1ð2Þx1ð2Þ . . . ���1ð2Þxmð2Þ � � � ���nð2Þ ���nð2Þx1ð2Þ � � � ���nð2Þxmð2Þ
..
. ..

.
� � � ..

.
� � � ..

. ..
.

� � � ..
.

���1ðpÞ ���1ðpÞx1ðpÞ � � � ���1ðpÞxmðpÞ � � � ���nðpÞ ���nðpÞx1ðpÞ � � � ���nðpÞxmðpÞ
..
. ..

.
� � � ..

.
� � � ..

. ..
.

� � � ..
.

���1ðPÞ ���1ðPÞx1ðPÞ � � � ���1ðPÞxmðPÞ � � � ���nðPÞ ���nðPÞx1ðPÞ � � � ���nðPÞxmðPÞ

2
66666666664
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and k is an nð1 þ mÞ � 1 vector of unknown consequent parameters,

k ¼ ½ k10 k11 k12 . . . k1m k20 k21 k22 . . . k2m . . . kn0 kn1 kn2 . . . knm�T

Usually the number of input-output patterns P used in training is greater than

the number of consequent parameters nð1 þ mÞ. It means that we are dealing

here with an overdetermined problem, and thus exact solution to Eq. (8.16) may

not even exist. Instead, we should find a least-square estimate of k;k�, that

minimises the squared error kA k � ydk
2. It is done by using the pseudoinverse

technique:

k� ¼ ðATAÞ�1ATyd; ð8:17Þ

where AT is the transpose of A, and ðATAÞ�1AT is the pseudoinverse of A if ðATAÞ
is non-singular.

As soon as the rule consequent parameters are established, we can compute an

actual network output vector, y, and determine the error vector, e,

e ¼ yd � y ð8:18Þ
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In the backward pass, the back-propagation algorithm is applied. The error

signals are propagated back, and the antecedent parameters are updated accord-

ing to the chain rule.

Let us, for instance, consider a correction applied to parameter a of the bell

activation function used in neuron A1. We may express the chain rule as follows:

�a ¼ ��
@E

@a
¼ ��

@E

@e
� @e

@y
� @y

@ð���i fiÞ
� @ð���i fiÞ

@ ���i

� @ ���i

@�i

� @�i

@�A1
� @�A1

@a
; ð8:19Þ

where � is the learning rate, and E is the instantaneous value of the squared error

for the ANFIS output neuron, i.e.,

E ¼ 1

2
e2 ¼ 1

2
ðyd � yÞ2 ð8:20Þ

Thus, we have

�a ¼ �� ðyd � yÞð�1Þfi �
���ið1 � ���iÞ

�i
� �i

�A1
� @�A1

@a
ð8:21Þ

or

�a ¼ � ðyd � yÞfi ���ið1 � ���iÞ �
1

�A1
� @�A1

@a
; ð8:22Þ

where

@�A1

@a
¼ � 1

1 þ x1 � a

c

� �2b
" #2

� 1

c2b
� 2b � ðx1 � aÞ2b�1 � ð�1Þ

¼ �2
A1 � 2b

c
� x1 � a

c

� �2b�1

Similarly, we can obtain corrections applied to parameters b and c.

In the ANFIS training algorithm suggested by Jang, both antecedent para-

meters and consequent parameters are optimised. In the forward pass, the

consequent parameters are adjusted while the antecedent parameters remain

fixed. In the backward pass, the antecedent parameters are tuned while the

consequent parameters are kept fixed. However, in some cases, when the input-

output data set is relatively small, membership functions can be described by a

human expert. In such situations, these membership functions are kept fixed

throughout the training process, and only consequent parameters are adjusted

(Jang et al., 1997).
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Let us now demonstrate an application of an ANFIS for function approxima-

tion. In this example, an ANFIS is used to follow a trajectory of the non-linear

function defined by the equation

y ¼ cosð2 x1Þ
ex2

:

First, we choose an appropriate architecture for the ANFIS. An ANFIS must

have two inputs – x1 and x2 – and one output – y.

We decide on the number of membership functions to be assigned to each

input by choosing the smallest number of membership functions that yields a

‘satisfactory’ performance. Thus, the experimental study may begin with two

membership functions assigned to each input variable.

To build an ANFIS, we choose either a programming language, for example

C/C++, or a neuro-fuzzy development tool. We will use one of the most popular

tools – the MATLAB Fuzzy Logic Toolbox. It provides a systematic framework for

building neuro-fuzzy inference systems and defines rules automatically based on

the number of membership functions assigned to each input variable. Thus, in

our example, the ANFIS is defined by four rules, and in fact has the structure

shown in Figure 8.10.

The ANFIS training data includes 101 training samples. They are represented

by a 101 � 3 matrix ½x1 x2 yd�, where x1 and x2 are input vectors, and yd is a

desired output vector. The first input vector, x1, starts at 0, increments by 0.1

and ends at 10. The second input vector, x2, is created by taking the sine of each

element of vector x1. Finally, each element of the desired output vector, yd, is

determined by the function equation.

An actual trajectory of the function and the ANFIS’s output after 1 and 100

epochs of training are depicted in Figure 8.11. Note that Figure 8.11(a) represents

results after the least-squares estimator identified the rule consequent para-

Figure 8.11 Learning in an ANFIS with two membership functions assigned to each

input: (a) one epoch; (b) 100 epochs
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meters for the first time. As we can see, the ANFIS’s performance is not always

adequate even after 100 epochs of training.

We can achieve some improvement in an ANFIS’s performance by increasing

the number of epochs, but much better results are obtained when we assign

three membership functions to each input variable. In this case, the ANFIS

model will have nine rules, as shown in Figure 8.12.

Figure 8.13 shows that the ANFIS’s performance improves significantly, and

even after one epoch its output quite accurately resembles the desired trajectory.

Figure 8.14 illustrates the membership functions before and after training.

Figure 8.12 An ANFIS model with nine rules

Figure 8.13 Learning in an ANFIS with three membership functions assigned to each

input: (a) one epoch; (b) 100 epochs
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The ANFIS has a remarkable ability to generalise and converge rapidly. This is

particularly important in on-line learning. As a result, Jang’s model and its

variants are finding numerous applications, especially in adaptive control.

8.5 Evolutionary neural networks

Although neural networks are used for solving a variety of problems, they still

have some limitations. One of the most common is associated with neural

network training. The back-propagation learning algorithm that is often used

because it is flexible and mathematically tractable (given that the transfer

functions of neurons can be differentiated) has a serious drawback: it cannot

guarantee an optimal solution. In real-world applications, the back-propagation

algorithm might converge to a set of sub-optimal weights from which it cannot

escape. As a result, the neural network is often unable to find a desirable solution

to a problem at hand.

Another difficulty is related to selecting an optimal topology for the neural

network. The ‘right’ network architecture for a particular problem is often

chosen by means of heuristics, and designing a neural network topology is still

more art than engineering.

Genetic algorithms are an effective optimisation technique that can guide

both weight optimisation and topology selection.

Let us first consider the basic concept of an evolutionary weight optimisation

technique (Montana and Davis, 1989; Whitley and Hanson, 1989; Ichikawa and

Figure 8.14 Initial and final membership functions of the ANFIS: (a) initial membership

functions; (b) membership functions after 100 epochs of training
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Sawa, 1992). To use genetic algorithms, we first need to represent the problem

domain as a chromosome. Suppose, for example, we want to find an optimal set

of weights for the multilayer feedforward neural network shown in Figure 8.15.

Initial weights in the network are chosen randomly within some small

interval, say ½�1;1�. The set of weights can be represented by a square matrix in

which a real number corresponds to the weighted link from one neuron to

another, and 0 means that there is no connection between two given neurons.

In total, there are 16 weighted links between neurons in Figure 8.15. Since

a chromosome is a collection of genes, a set of weights can be represented by a

16-gene chromosome, where each gene corresponds to a single weighted link in

the network. Thus, if we string the rows of the matrix together, ignoring zeros,

we obtain a chromosome.

In addition, each row now represents a group of all the incoming weighted

links to a single neuron. This group can be thought of as a functional building

block of the network (Montana and Davis, 1989), and therefore should be

allowed to stay together passing genetic material from one generation to the

next. To achieve this, we should associate each gene not with a single weight but

rather with a group of all incoming weights of a given neuron, as shown in

Figure 8.15.

The second step is to define a fitness function for evaluating the chromo-

some’s performance. This function must estimate the performance of a given

neural network. We can apply here a fairly simple function defined by the

reciprocal of the sum of squared errors. To evaluate the fitness of a given

chromosome, each weight contained in the chromosome is assigned to the

respective link in the network. The training set of examples is then presented

to the network, and the sum of squared errors is calculated. The smaller the sum,

the fitter the chromosome. In other words, the genetic algorithm attempts to

find a set of weights that minimises the sum of squared errors.

The third step is to choose the genetic operators – crossover and mutation. A

crossover operator takes two parent chromosomes and creates a single child with

Figure 8.15 Encoding a set of weights in a chromosome
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genetic material from both parents. Each gene in the child’s chromosome

is represented by the corresponding gene of the randomly selected parent.

Figure 8.16(a) shows an application of the crossover operator.

A mutation operator randomly selects a gene in a chromosome and adds a

small random value between �1 and 1 to each weight in this gene. Figure 8.16(b)

shows an example of mutation.

Now we are ready to apply the genetic algorithm. Of course, we still need to

define the population size, i.e. the number of networks with different weights,

the crossover and mutation probabilities and the number of generations.

Figure 8.16 Genetic operations in neural network weight optimisation: (a) crossover;

(b) mutation
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So far we have assumed that the structure of the network is fixed, and

evolutionary learning is used only to optimise weights in the given network.

However, the architecture of the network (i.e. the number of neurons and their

interconnections) often determines the success or failure of the application.

Usually the network architecture is decided by trial and error; there is a great

need for a method of automatically designing the architecture for a particular

application. Genetic algorithms may well help us in selecting the network

architecture.

The basic idea behind evolving a suitable network architecture is to conduct a

genetic search in a population of possible architectures (Miller et al., 1989;

Schaffer et al., 1992). Of course, we must first choose a method of encoding a

network’s architecture into a chromosome.

There are many different ways to encode the network’s structure. The key is to

decide how much information is required for the network representation. The

more parameters of the network architecture, the greater the computational

cost. As an illustration, we can consider a simple direct method of encoding

(Miller et al., 1989). Although direct encoding is a restricted technique, and can

be applied only to feedforward networks with a fixed number of neurons, it

demonstrates how a connection topology is evolved.

The connection topology of a neural network can be represented by a square

connectivity matrix, as shown in Figure 8.17. Each entry in the matrix defines the

type of connection from one neuron (column) to another (row), where 0 means

no connection and 1 denotes connection for which the weight can be changed

through learning. To transform the connectivity matrix into a chromosome, we

need only to string the rows of the matrix together, as shown in Figure 8.17.

Given a set of training examples and a binary string representation for

possible network architectures, a basic GA can be described by the following

steps:

Step 1: Choose the size of a chromosome population, the crossover and

mutation probabilities, and define the number of training epochs.

Step 2: Define a fitness function to measure the performance, or fitness, of an

individual chromosome. In general, the network’s fitness should be

Figure 8.17 Direct encoding of the network topology
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based not only on its accuracy, but also on its learning speed, size

and complexity. However, the network’s performance is much more

important than its size, and therefore the fitness function can still be

defined by the reciprocal of the sum of squared errors.

Step 3: Randomly generate an initial population of chromosomes.

Step 4: Decode an individual chromosome into a neural network. Since our

networks are restricted to be feedforward, ignore all feedback connec-

tions specified in the chromosome. Set initial weights of the network to

small random numbers, say in the range ½�1;1�. Train the network on a

training set of examples for a certain number of epochs using the back-

propagation algorithm. Calculate the sum of squared errors and

determine the network’s fitness.

Step 5: Repeat Step 4 until all the individuals in the population have been

considered.

Step 6: Select a pair of chromosomes for mating, with a probability propor-

tionate to their fitness.

Step 7: Create a pair of offspring chromosomes by applying the genetic

operators crossover and mutation.

A crossover operator randomly chooses a row index and simply

swaps the corresponding rows between two parents, creating two

offspring. A mutation operator flips one or two bits in the chromosome

with some low probability, say 0.005.

Step 8: Place the created offspring chromosomes in the new population.

Step 9: Repeat Step 6 until the size of the new chromosome population

becomes equal to the size of the initial population, and then replace

the initial (parent) chromosome population with the new (offspring)

population.

Step 10: Go to Step 4, and repeat the process until a specified number of

generations has been considered.

An evolutionary cycle of evolving a neural network topology is presented in

Figure 8.18.

In addition to neural network training and topology selection, evolutionary

computation can also be used to optimise transfer functions and select suitable

input variables. Evolving a set of critical inputs from a large number of

possible input variables with complex or unknown functional relationships is

an area of current research that has a great potential for evolutionary neural

networks. Further topics on new areas of evolutionary computation research in

neural systems can be found in Bäck et al (1997).
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8.6 Fuzzy evolutionary systems

Evolutionary computation is also used in the design of fuzzy systems, particu-

larly for generating fuzzy rules and adjusting membership functions of fuzzy sets.

In this section, we introduce an application of genetic algorithms to select an

appropriate set of fuzzy IF-THEN rules for a classification problem (Ishibuchi

et al., 1995).

To apply genetic algorithms, we need to have a population of feasible

solutions – in our case, a set of fuzzy IF-THEN rules. We need to obtain this set.

For a classification problem, a set of fuzzy IF-THEN rules can be generated from

numerical data (Ishibuchi et al., 1992). First, we use a grid-type fuzzy partition

of an input space.

Figure 8.19 shows an example of the fuzzy partition of a two-dimensional

input space into 3 � 3 fuzzy subspaces. Black and white dots here denote the

training patterns of Class 1 and Class 2, respectively. The grid-type fuzzy

Figure 8.18 The evolutionary cycle of evolving a neural network topology
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partition can be seen as a rule table. The linguistic values of input x1 (A1, A2 and

A3) form the horizontal axis, and the linguistic values of input x2 (B1, B2

and B3) form the vertical axis. At the intersection of a row and a column lies

the rule consequent.

In the rule table, each fuzzy subspace can have only one fuzzy IF-THEN rule,

and thus the total number of rules that can be generated in a K � K grid is equal

to K � K. Fuzzy rules that correspond to the K � K fuzzy partition can be

represented in a general form as:

Rule Rij:

IF x1p is Ai i ¼ 1;2; . . . ;K

AND x2p is Bj j ¼ 1;2; . . . ;K

THEN xp 2 Cn CFCn

AiBj

n o
xp ¼ ðx1p; x2pÞ; p ¼ 1;2; . . . ;P;

where K is the number of fuzzy intervals in each axis, xp is a training pattern on

input space X1 � X2, P is the total number of training patterns, Cn is the rule

consequent (which, in our example, is either Class 1 or Class 2), and CFCn

AiBj
is the

certainty factor or likelihood that a pattern in fuzzy subspace AiBj belongs to

class Cn.

To determine the rule consequent and the certainty factor, we use the

following procedure:

Step 1: Partition an input space into K � K fuzzy subspaces, and calculate the

strength of each class of training patterns in every fuzzy subspace.

Each class in a given fuzzy subspace is represented by its training

patterns. The more training patterns, the stronger the class. In other

Figure 8.19 Fuzzy partition by a 3 � 3 fuzzy grid
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words, in a given fuzzy subspace, the rule consequent becomes more

certain when patterns of one particular class appear more often than

patterns of any other class. The strength of class Cn in fuzzy subspace

AiBj can be determined as:

�Cn

AiBj
¼
XP

p¼1
xp2Cn

�Ai
ðx1pÞ � �Bj

ðx2pÞ; xp ¼ ðx1p; x2pÞ; ð8:23Þ

where �Ai
ðx1pÞ and �Bi

ðx2pÞ are degrees of membership of training

pattern xp in fuzzy set Ai and fuzzy set Bj, respectively.

In Figure 8.19, for example, the strengths of Class 1 and Class 2 in

fuzzy subspace A2B1 are calculated as:

�Class1
A2B1

¼ �A2
ðx4Þ � �B1

ðx4Þ þ �A2
ðx6Þ � �B1

ðx6Þ þ �A2
ðx8Þ � �B1

ðx8Þ
þ �A2

ðx15Þ � �B1
ðx15Þ

¼ 0:75 � 0:89 þ 0:92 � 0:34 þ 0:87 � 0:12 þ 0:11 � 0:09 ¼ 1:09

�Class2
A2B1

¼ �A2
ðx1Þ � �B1

ðx1Þ þ �A2
ðx5Þ � �B1

ðx5Þ þ �A2
ðx7Þ � �B1

ðx7Þ
¼ 0:42 � 0:38 þ 0:54 � 0:81 þ 0:65 � 0:21 ¼ 0:73

Step 2: Determine the rule consequent and the certainty factor in each fuzzy

subspace. As the rule consequent is determined by the strongest class,

we need to find class Cm such that,

�Cm

AiBj
¼ max �C1

AiBj
; �C2

AiBj
; . . . ; �CN

AiBj

h i
ð8:24Þ

If a particular class takes the maximum value, the rule consequent

is determined as Cm. For example, in fuzzy subspace A2B1, the rule

consequent is Class 1.

Then the certainty factor can be calculated:

CFCm

AiBj
¼

�Cm

AiBj
� �AiBj

XN
n¼1

�Cn

AiBj

; ð8:25Þ

where

�AiBj
¼

XN
n¼1
n 6¼m

�Cn

AiBj

N � 1
ð8:26Þ

For example, the certainty factor of the rule consequent correspond-

ing to fuzzy subspace A2B1 can be calculated as:

CFClass2
A2B1

¼ 1:09 � 0:73

1:09 þ 0:73
¼ 0:20
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How do we interpret the certainty factor here?

The certainty factor specified by Eq. (8.25) can be interpreted as follows. If all the

training patterns in fuzzy subspace AiBj belong to the same class Cm, then the

certainty factor is maximum and it is certain that any new pattern in this

subspace will belong to class Cm. If, however, training patterns belong to

different classes and these classes have similar strengths, then the certainty

factor is minimum and it is uncertain that a new pattern will belong to class Cm.

This means that patterns in fuzzy subspace A2B1 can be easily misclassified.

Moreover, if a fuzzy subspace does not have any training patterns, we cannot

determine the rule consequent at all. In fact, if a fuzzy partition is too coarse,

many patterns may be misclassified. On the other hand, if a fuzzy partition is too

fine, many fuzzy rules cannot be obtained, because of the lack of training

patterns in the corresponding fuzzy subspaces. Thus, the choice of the density of

a fuzzy grid is very important for the correct classification of an input pattern.

Meanwhile, as can be seen in Figure 8.19, training patterns are not necessarily

distributed evenly in the input space. As a result, it is often difficult to choose an

appropriate density for the fuzzy grid. To overcome this difficulty, we use

multiple fuzzy rule tables (Ishibuchi et al., 1992); an example of these is shown

in Figure 8.20. The number of these tables depends on the complexity of the

classification problem.

Fuzzy IF-THEN rules are generated for each fuzzy subspace of multiple fuzzy

rule tables, and thus a complete set of rules can be specified as:

SALL ¼
XL

K¼2

SK; K ¼ 2; 3; . . . ;L ð8:27Þ

where SK is the rule set corresponding to a fuzzy rule table K.

The set of rules SALL generated for multiple fuzzy rule tables shown in Figure

8.20 contains 22 þ 33 þ 44 þ 55 þ 66 ¼ 90 rules.

Once the set of rules SALL is generated, a new pattern, x ¼ ðx1; x2Þ, can be

classified by the following procedure:

Step 1: In every fuzzy subspace of the multiple fuzzy rule tables, calculate the

degree of compatibility of a new pattern with each class:

�Cn

KfAiBjg ¼ �KfAigðx1Þ � �KfBjgðx2Þ � CFCn

KfAiBjg ð8:28Þ

n ¼ 1;2; . . . ;N; K ¼ 2;3; . . . ;L; i ¼ 1; 2; . . . ;K; j ¼ 1;2; . . . ;K

Figure 8.20 Multiple fuzzy rule tables

293FUZZY EVOLUTIONARY SYSTEMS



Step 2: Determine the maximum degree of compatibility of the new pattern

with each class:

�Cn ¼ max �Cn

1fA1B1g; �
Cn

1fA1B2g; �
Cn

1fA2B1g; �
Cn

1fA2B2g

h
; ð8:29Þ

�Cn

2fA1B1g; . . . ;�
Cn

2fA1BKg;�
Cn

2fA2B1g; . . . ;�
Cn

2fA2BKg; . . . ;�
Cn

2fAKB1g; . . . ;�
Cn

2fAKBKg; . . . ;

�Cn

LfA1B1g; . . . ;�
Cn

LfA1BKg;�
Cn

LfA2B1g; . . . ;�
Cn

LfA2BKg; . . . ;�
Cn

LfAKB1g; . . . ;�
Cn

LfAKBKg

i

n ¼ 1;2; . . . ;N

Step 3: Determine class Cm with which the new pattern has the highest degree

of compatibility, that is:

�Cm ¼ max �C1 ; �C2 ; . . . ; �CN
� �

ð8:30Þ

Assign pattern x ¼ ðx1; x2Þ to class Cm.

The number of multiple fuzzy rule tables required for an accurate pattern

classification may be quite large. Consequently, a complete set of rules SALL can

be enormous. Meanwhile, the rules in SALL have different classification abilities,

and thus by selecting only rules with high potential for accurate classification,

we can dramatically reduce the size of the rule set.

The problem of selecting fuzzy IF-THEN rules can be seen as a combinatorial

optimisation problem with two objectives. The first, more important, objective is

to maximise the number of correctly classified patterns; the second is to

minimise the number of rules (Ishibuchi et al., 1995). Genetic algorithms can

be applied to this problem.

In genetic algorithms, each feasible solution is treated as an individual, and

thus we need to represent a feasible set of fuzzy IF-THEN rules as a chromosome

of a fixed length. Each gene in such a chromosome should represent a fuzzy rule

in SALL, and if we define SALL as:

SALL ¼ 22 þ 33 þ 44 þ 55 þ 66

the chromosome can be specified by a 90-bit string. Each bit in this string can

assume one of three values: 1, �1 or 0.

Our goal is to establish a compact set of fuzzy rules S by selecting appropriate

rules from the complete set of rules SALL. If a particular rule belongs to set S, the

corresponding bit in the chromosome assumes value 1, but if it does not belong

to S the bit assumes value �1. Dummy rules are represented by zeros.

What is a dummy rule?

A dummy rule is generated when the consequent of this rule cannot be

determined. This is normally the case when a corresponding fuzzy subspace

has no training patterns. Dummy rules do not affect the performance of a

classification system, and thus can be excluded from rule set S.
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How do we decide which fuzzy rule belongs to rule set S and which does

not?

In the initial population, this decision is based on a 50 per cent chance. In other

words, each fuzzy rule has a 0.5 probability of receiving value 1 in each

chromosome represented in the initial population.

A basic genetic algorithm for selecting fuzzy IF-THEN rules includes the

following steps (Ishibuchi et al., 1995):

Step 1: Randomly generate an initial population of chromosomes. The popula-

tion size may be relatively small, say 10 or 20 chromosomes. Each gene

in a chromosome corresponds to a particular fuzzy IF-THEN rule in the

rule set defined by SALL. The genes corresponding to dummy rules receive

values 0, and all other genes are randomly assigned either 1 or �1.

Step 2: Calculate the performance, or fitness, of each individual chromosome

in the current population.

The problem of selecting fuzzy rules has two objectives: to maximise

the accuracy of the pattern classification and to minimise the size of a

rule set. The fitness function has to accommodate both these objec-

tives. This can be achieved by introducing two respective weights, wP

and wN , in the fitness function:

f ðSÞ ¼ wP
Ps

PALL
� wN

NS

NALL
; ð8:31Þ

where Ps is the number of patterns classified successfully, PALL is the

total number of patterns presented to the classification system, NS and

NALL are the numbers of fuzzy IF-THEN rules in set S and set SALL,

respectively.

The classification accuracy is more important than the size of a rule

set. This can be reflected by assigning the weights such that,

0 < wN 4wP

Typical values for wN and wP are 1 and 10, respectively. Thus, we obtain:

f ðSÞ ¼ 10
Ps

PALL
� NS

NALL
ð8:32Þ

Step 3: Select a pair of chromosomes for mating. Parent chromosomes are

selected with a probability associated with their fitness; a better fit

chromosome has a higher probability of being selected.

Step 4: Create a pair of offspring chromosomes by applying a standard cross-

over operator. Parent chromosomes are crossed at the randomly

selected crossover point.

Step 5: Perform mutation on each gene of the created offspring. The mutation

probability is normally kept quite low, say 0.01. The mutation is done

by multiplying the gene value by �1.
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Step 6: Place the created offspring chromosomes in the new population.

Step 7: Repeat Step 3 until the size of the new population becomes equal to the

size of the initial population, and then replace the initial (parent)

population with the new (offspring) population.

Step 9: Go to Step 2, and repeat the process until a specified number of

generations (typically several hundreds) is considered.

The above algorithm can dramatically reduce the number of fuzzy IF-THEN

rules needed for correct classification. In fact, several computer simulations

(Ishibuchi et al., 1995) demonstrate that the number of rules can be cut down to

less than 2 per cent of the initially generated set of rules. Such a reduction leaves

a fuzzy classification system with relatively few significant rules, which can then

be carefully examined by human experts. This allows us to use fuzzy evolu-

tionary systems as a knowledge acquisition tool for discovering new knowledge

in complex databases.

8.7 Summary

In this chapter, we considered hybrid intelligent systems as a combination of

different intelligent technologies. First we introduced a new breed of expert

systems, called neural expert systems, which combine neural networks and rule-

based expert systems. Then we considered a neuro-fuzzy system that was

functionally equivalent to the Mamdani fuzzy inference model, and an adaptive

neuro-fuzzy inference system, ANFIS, equivalent to the Sugeno fuzzy inference

model. Finally, we discussed evolutionary neural networks and fuzzy evolution-

ary systems.

The most important lessons learned in this chapter are:

. Hybrid intelligent systems are systems that combine at least two intelligent

technologies; for example, a combination of a neural network and a fuzzy

system results in a hybrid neuro-fuzzy system.

. Probabilistic reasoning, fuzzy set theory, neural networks and evolutionary

computation form the core of soft computing, an emerging approach to

building hybrid intelligent systems capable of reasoning and learning in

uncertain and imprecise environments.

. Both expert systems and neural networks attempt to emulate human intelli-

gence, but use different means. While expert systems rely on IF-THEN rules

and logical inference, neural networks use parallel data processing. An expert

system cannot learn, but can explain its reasoning, while a neural network

can learn, but acts as a black-box. These qualities make them good candidates

for building a hybrid intelligent system, called a neural or connectionist

expert system.

. Neural expert systems use a trained neural network in place of the knowledge

base. Unlike conventional rule-based expert systems, neural expert systems
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can deal with noisy and incomplete data. Domain knowledge can be utilised

in an initial structure of the neural knowledge base. After training, the neural

knowledge base can be interpreted as a set of IF-THEN production rules.

. A neuro-fuzzy system corresponding to the Mamdani fuzzy inference model

can be represented by a feedforward neural network consisting of five layers:

input, fuzzification, fuzzy rule, output membership and defuzzification.

. A neuro-fuzzy system can apply standard learning algorithms developed for

neural networks, including the back-propagation algorithm. Expert knowl-

edge in the form of linguistic variables and fuzzy rules can be embodied in the

structure of a neuro-fuzzy system. When a representative set of examples is

available, a neuro-fuzzy system can automatically transform it into a set of

fuzzy IF-THEN rules.

. An adaptive neuro-fuzzy inference system, ANFIS, corresponds to the first-

order Sugeno fuzzy model. The ANFIS is represented by a neural network with

six layers: input, fuzzification, fuzzy rule, normalisation, defuzzification and

summation.

. The ANFIS uses a hybrid learning algorithm that combines the least-squares

estimator with the gradient descent method. In the forward pass, a training

set of input patterns is presented, neuron outputs are calculated on a layer-by-

layer basis, and rule consequent parameters are identified by the least-squares

estimator. In the backward pass, the error signals are propagated back and the

rule antecedent parameters are updated according to the chain rule.

. Genetic algorithms are effective for optimising weights and selecting the

topology of a neural network.

. Evolutionary computation can also be used for selecting an appropriate set of

fuzzy rules for solving a complex classification problem. While a complete set

of fuzzy IF-THEN rules is generated from numerical data by using multiple

fuzzy rule tables, a genetic algorithm is used to select a relatively small

number of fuzzy rules with high classification power.

Questions for review

1 What is a hybrid intelligent system? Give an example. What constitutes the core of soft

computing? What are the differences between ‘hard’ and ‘soft’ computing?

2 Why is a neural expert system capable of approximate reasoning? Draw a neural

knowledge base for a three-class classification problem. Suppose that an object to be

classified is either an apple, an orange or a lemon.

3 Why are fuzzy systems and neural networks considered to be natural complementary

tools for building intelligent systems? Draw a neuro-fuzzy system corresponding to the

Sugeno fuzzy inference model for the implementation of the AND operation. Assume

that the system has two inputs and one output, and each of them is represented by

two linguistic values: small and large.
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4 Describe the functions of each layer in a neuro-fuzzy system. How is fuzzification done

in this system? How does a fuzzy rule neuron combine its multiple inputs? How is

defuzzification done in neuro-fuzzy systems?

5 How does a neuro-fuzzy system learn? What system parameters are learned or tuned

during training? How does a neuro-fuzzy system identify false rules given by a human

expert? Give an example.

6 Describe the functions of each layer of an ANFIS. What are activation functions used by

fuzzification neurons in Jang’s model? What is a normalised firing strength of a fuzzy

rule?

7 How does an ANFIS learn? Describe a hybrid learning algorithm. What are the

advantages of this algorithm?

8 How should we change the ANFIS architecture shown in Figure 8.10 if we want to

implement a zero-order Sugeno fuzzy model?

9 What are the differences between a neuro-fuzzy system corresponding to the Mamdani

fuzzy inference model and an ANFIS?

10 How is a set of weights of a neural network encoded in a chromosome? Give an

example. Describe the genetic operations used to optimise the weights of a neural

network.

11 How is a neural network topology encoded in a chromosome? Give an example. Outline

the main steps of a basic genetic algorithm for evolving an optimal neural network

topology.

12 What is a grid-fuzzy partition? Give an example. Why are multiple fuzzy rule tables

needed for a complex pattern classification problem? Describe a genetic algorithm for

selecting fuzzy IF-THEN rules.
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9Knowledge engineering and
data mining

In which we discuss how to pick the right tool for the job, build an

intelligent system and turn data into knowledge.

9.1 Introduction, or what is knowledge engineering?

Choosing the right tool for the job is undoubtedly the most critical part of

building an intelligent system. Having read this far, you are now familiar with

rule- and frame-based expert systems, fuzzy systems, artificial neural networks,

genetic algorithms, and hybrid neuro-fuzzy and fuzzy evolutionary systems.

Although several of these tools handle many problems well, selecting the one

best suited to a particular problem can be difficult. Davis’s law states: ‘For every

tool there is a task perfectly suited to it’ (Davis and King, 1977). However, it

would be too optimistic to assume that for every task there is a tool perfectly

suited to it. In this chapter, we suggest basic guidelines for selecting an

appropriate tool for a given task, consider the main steps in building

an intelligent system and discuss how to turn data into knowledge.

The process of building an intelligent system begins with gaining an under-

standing of the problem domain. We first must assess the problem and

determine what data are available and what is needed to solve the problem.

Once the problem is understood, we can choose an appropriate tool and develop

the system with this tool. The process of building intelligent knowledge-based

systems is called knowledge engineering. It has six basic phases (Waterman,

1986; Durkin, 1994):

1 Problem assessment

2 Data and knowledge acquisition

3 Development of a prototype system

4 Development of a complete system

5 Evaluation and revision of the system

6 Integration and maintenance of the system



The process of knowledge engineering is illustrated in Figure 9.1. Knowledge

engineering, despite its name, is still more art than engineering, and a real

process of developing an intelligent system is not as neat and clean as Figure 9.1

might suggest. Although the phases are shown in sequence, they usually overlap

considerably. The process itself is highly iterative, and at any time we may

engage in any development activities. Let us now examine each phase in more

detail.

Figure 9.1 The process of knowledge engineering
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9.1.1 Problem assessment

During this phase we determine the problem’s characteristics, identify the

project’s participants, specify the project’s objectives and determine what

resources are needed for building the system.

To characterise the problem, we need to determine the problem type, input

and output variables and their interactions, and the form and content of the

solution.

The first step is to determine the problem type. Typical problems often

addressed by intelligent systems are illustrated in Table 9.1. They include

diagnosis, selection, prediction, classification, clustering, optimisation and

control.

The problem type influences our choice of the tool for building an intelligent

system. Suppose, for example, we develop a system to detect faults in an electric

circuit and guide the user through the diagnostic process. This problem clearly

belongs to diagnosis. Domain knowledge in such problems can often be repres-

ented by production rules, and thus a rule-based expert system might be the

right candidate for the job.

Of course, the choice of a building tool also depends on the form and content

of the solution. For example, systems that are built for diagnostic tasks usually

need explanation facilities – the means that enable them to justify their

solutions. Such facilities are an essential component of any expert system, but

are not available in neural networks. On the other hand, a neural network might

be a good choice for classification and clustering problems where the results are

often more important than understanding the system’s reasoning process.

The next step in the problem assessment is to identify the participants in

the project. Two critical participants in any knowledge engineering project are

Table 9.1 Typical problems addressed by intelligent systems

Problem type Description

Diagnosis Inferring malfunctions of an object from its behaviour and

recommending solutions.

Selection Recommending the best option from a list of possible

alternatives.

Prediction Predicting the future behaviour of an object from its behaviour

in the past.

Classification Assigning an object to one of the defined classes.

Clustering Dividing a heterogeneous group of objects into homogeneous

subgroups.

Optimisation Improving the quality of solutions until an optimal one is found.

Control Governing the behaviour of an object to meet specified

requirements in real-time.
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the knowledge engineer (a person capable of designing, building and testing an

intelligent system) and the domain expert (a knowledgeable person capable of

solving problems in a specific area or domain).

Then we specify the project’s objectives, such as gaining a competitive edge,

improving the quality of decisions, reducing labour costs, and improving the

quality of products and services.

Finally, we determine what resources are needed for building the system.

They normally include computer facilities, development software, knowledge

and data sources (human experts, textbooks, manuals, web sites, databases and

examples) and, of course, money.

9.1.2 Data and knowledge acquisition

During this phase we obtain further understanding of the problem domain by

collecting and analysing both data and knowledge, and making key concepts of

the system’s design more explicit.

Data for intelligent systems are often collected from different sources, and

thus can be of different types. However, a particular tool for building an

intelligent system requires a particular type of data. Some tools deal with

continuous variables, while others need to have all variables divided into several

ranges, or to be normalised to a single range, say from 0 to 1. Some handle

symbolic (textual) data, while others use only numerical data. Some tolerate

imprecise and noisy data, while others require only well-defined, clean data. As

a result, the data must be transformed, or massaged, into the form useful for a

particular tool. However, no matter which tool we choose, there are three

important issues that must be resolved before massaging the data (Berry and

Linoff, 1997).

The first issue is incompatible data. Often the data we want to analyse store

text in EBCDIC coding and numbers in packed decimal format, while the tools

we want to use for building intelligent systems store text in the ASCII code and

numbers as integers with a single- or double-precision floating point. This issue is

normally resolved with data transport tools that automatically produce the code

for the required data transformation.

The second issue is inconsistent data. Often the same facts are represented

differently in different databases. If these differences are not spotted and

resolved in time, we might find ourselves, for example, analysing consumption

patterns of carbonated drinks using data that do not include Coca-Cola just

because they were stored in a separate database.

The third issue is missing data. Actual data records often contain blank fields.

Sometimes we might throw such incomplete records away, but normally we

would attempt to infer some useful information from them. In many cases,

we can simply fill the blank fields in with the most common or average values. In

other cases, the fact that a particular field has not been filled in might itself

provide us with very useful information. For example, in a job application form,

a blank field for a business phone number might suggest that an applicant is

currently unemployed.
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Our choice of the system building tool depends on the acquired data. As an

example, we can consider a problem of estimating the market value of a property

based on its features. This problem can be handled by both expert system and

neural network technologies. Therefore, before deciding which tool to apply, we

should investigate the available data. If, for instance, we can obtain recent sale

prices for houses throughout the region, we might train a neural network by

using examples of previous sales rather than develop an expert system using

knowledge of an experienced appraiser.

The task of data acquisition is closely related to the task of knowledge

acquisition. In fact, we acquire some knowledge about the problem domain

while collecting the data.

What are the stages in the knowledge acquisition process?

Usually we start with reviewing documents and reading books, papers and

manuals related to the problem domain. Once we become familiar with the

problem, we can collect further knowledge through interviewing the domain

expert. Then we study and analyse the acquired knowledge, and repeat the entire

process again. Knowledge acquisition is an inherently iterative process.

During a number of interviews, the expert is asked to identify four or five

typical cases, describe how he or she solves each case and explain, or ‘think out

loud’, the reasoning behind each solution (Russell and Norvig, 2002). However,

extracting knowledge from a human expert is a difficult process – it is often

called the ‘knowledge acquisition bottleneck’. Quite often experts are unaware of

what knowledge they have and the problem-solving strategy they use, or are

unable to verbalise it. Experts may also provide us with irrelevant, incomplete or

inconsistent information.

Understanding the problem domain is critical for building intelligent systems.

A classical example is given by Donald Michie (1982). A cheese factory had a very

experienced cheese-tester who was approaching retirement age. The factory

manager decided to replace him with an ‘intelligent machine’. The human

tester tested the cheese by sticking his finger into a sample and deciding if it ‘felt

right’. So it was assumed the machine had to do the same – test for the right

surface tension. But the machine was useless. Eventually, it turned out that

the human tester subconsciously relied on the cheese’s smell rather than

on its surface tension and used his finger just to break the crust and let the

aroma out.

The data and knowledge acquired during the second phase of knowledge

engineering should enable us to describe the problem-solving strategy at the

most abstract, conceptual, level and choose a tool for building a prototype.

However, we must not make a detailed analysis of the problem before evaluating

the prototype.

9.1.3 Development of a prototype system

This actually involves creating an intelligent system – or, rather, a small version

of it – and testing it with a number of test cases.
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What is a prototype?

A prototype system can be defined as a small version of the final system. It is

designed to test how well we understand the problem, or in other words to make

sure that the problem-solving strategy, the tool selected for building a system,

and techniques for representing acquired data and knowledge are adequate to

the task. It also provides us with an opportunity to persuade the sceptics and, in

many cases, to actively engage the domain expert in the system’s development.

After choosing a tool, massaging the data and representing the acquired

knowledge in the form suitable for that tool, we design and then implement a

prototype version of the system. Once it is built, we examine (usually together

with the domain expert) the prototype’s performance by testing it with a variety

of test cases. The domain expert takes an active part in testing the system, and as

a result becomes more involved in the system’s development.

What is a test case?

A test case is a problem successfully solved in the past for which input data and

an output solution are known. During testing, the system is presented with the

same input data and its solution is compared with the original solution.

What should we do if we have made a bad choice of the system-building

tool?

We should throw the prototype away and start the prototyping phase over again

– any attempt to force an ill-chosen tool to suit a problem it wasn’t designed for

would only lead to further delays in the system’s development. The main goal of

the prototyping phase is to obtain a better understanding of the problem, and

thus by starting this phase with a new tool, we waste neither time nor money.

9.1.4 Development of a complete system

As soon as the prototype begins functioning satisfactorily, we can assess what is

actually involved in developing a full-scale system. We develop a plan, schedule

and budget for the complete system, and also clearly define the system’s

performance criteria.

The main work at this phase is often associated with adding data and

knowledge to the system. If, for example, we develop a diagnostic system, we

might need to provide it with more rules for handling specific cases. If we

develop a prediction system, we might need to collect additional historical

examples to make predictions more accurate.

The next task is to develop the user interface – the means of delivering

information to a user. The user interface should make it easy for users to obtain

any details they need. Some systems may be required to explain its reasoning

process and justify its advice, analysis or conclusion, while others need to

represent their results in a graphical form.

The development of an intelligent system is, in fact, an evolutionary process.

As the project proceeds and new data and knowledge are collected and added to
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the system, its capability improves and the prototype gradually evolves into a

final system.

9.1.5 Evaluation and revision of the system

Intelligent systems, unlike conventional computer programs, are designed to

solve problems that quite often do not have clearly defined ‘right’ and ‘wrong’

solutions. To evaluate an intelligent system is, in fact, to assure that the system

performs the intended task to the user’s satisfaction. A formal evaluation of

the system is normally accomplished with the test cases selected by the user. The

system’s performance is compared against the performance criteria that were

agreed upon at the end of the prototyping phase.

The evaluation often reveals the system’s limitations and weaknesses, so it is

revised and relevant development phases are repeated.

9.1.6 Integration and maintenance of the system

This is the final phase in developing the system. It involves integrating the

system into the environment where it will operate and establishing an effective

maintenance program.

By ‘integrating’ we mean interfacing a new intelligent system with existing

systems within an organisation and arranging for technology transfer. We must

make sure that the user knows how to use and maintain the system. Intelligent

systems are knowledge-based systems, and because knowledge evolves over time,

we need to be able to modify the system.

But who maintains the system?

Once the system is integrated in the working environment, the knowledge

engineer withdraws from the project. This leaves the system in the hands of its

users. Thus, the organisation that uses the system should have in-house expertise

to maintain and modify the system.

Which tool should we use?

As must be clear by now, there is no single tool that is applicable to all tasks.

Expert systems, neural networks, fuzzy systems and genetic algorithms all have a

place and all find numerous applications. Only two decades ago, in order to

apply an intelligent system (or, rather, an expert system), one had first to find a

‘good’ problem, a problem that had some chance for success. Knowledge

engineering projects were expensive, laborious and had high investment risks.

The cost of developing a moderate-sized expert system was typically between

$250,000 and $500,000 (Simon, 1987). Such ‘classic’ expert systems as DENDRAL

and MYCIN took 20 to 40 person-years to complete. Fortunately, the last few

years have seen a dramatic change in the situation. Today, most intelligent

systems are built within months rather than years. We use commercially

available expert system shells, fuzzy, neural network and evolutionary com-

putation toolboxes, and run our applications on standard PCs. And most
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importantly, adopting new intelligent technologies is becoming problem-

driven, rather than curiosity-driven as it often was in the past. Nowadays an

organisation addresses its problems with appropriate intelligent tools.

In the following sections, we discuss applications of different tools for solving

specific problems.

9.2 Will an expert system work for my problem?

Case study 1: Diagnostic expert systems

I want to develop an intelligent system that can help me to fix malfunctions

of my Mac computer. Will an expert system work for this problem?

There is an old but still useful test for prime candidates for expert systems. It is

called the Phone Call Rule (Firebaugh, 1988): ‘Any problem that can be solved by

your in-house expert in a 10–30 minute phone call can be developed as an

expert system’.

Diagnosis and troubleshooting problems (of course, computer diagnosis is

one of them) have always been very attractive candidates for expert system

technology. As you may recall, medical diagnosis was one of the first areas to

which expert systems were applied. Since then, diagnostic expert systems have

found numerous applications, particularly in engineering and manufacturing.

Diagnostic expert systems are relatively easy to develop – most diagnostic

problems have a finite list of possible solutions, involve a rather limited amount

of well-formalised knowledge, and often take a human expert a short time (say,

an hour) to solve.

To develop a computer diagnostic system, we need to acquire knowledge

about troubleshooting in computers. We might find and interview a hardware

specialist, but for a small expert system there is a better alternative – to use a

troubleshooting manual. It provides step-by-step procedures for detecting and

fixing a variety of faults. In fact, such a manual contains knowledge in the most

concise form that can be directly used in an expert system. There is no need to

interview an expert, and thus we can avoid the ‘knowledge acquisition bottle-

neck’.

Computer manuals often include troubleshooting sections, which consider

possible problems with the system start-up, computer/peripherals (hard disk,

keyboard, monitor, printer), disk drives (floppy disk, CD-ROM), files, and

network and file sharing. In our example, we will consider only troubleshooting

the Mac system start-up. However, once the prototype expert system is devel-

oped, you can easily expand it.

Figure 9.2 illustrates the troubleshooting procedure for the Macintosh com-

puter. As you can see, troubleshooting here is carried out through a series of

visual inspections, or tests. We first collect some initial information (the system

does not start), infer from it whatever can be inferred, gather additional

information (power cords are OK, Powerstrip is OK, etc.) and finally identify
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the cause of the system’s malfunction. This is essentially data-driven reasoning,

which can be best realised with the forward-chaining inference technique. The

expert system should first ask the user to select a particular task, and once the

task is selected, the system should direct troubleshooting by asking the user for

additional information until the fault is found.

Let us develop a general rule structure. In each rule, we need to include

a clause that identifies the current task. Since our prototype is limited to the

Figure 9.2 Troubleshooting the system start-up for Macintosh computers
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Mac system start-up, the first clause of all rules will identify this task. For

example,

Rule: 1

if task is ‘system start-up’

then ask problem

Rule: 2

if task is ‘system start-up’

and problem is ‘system does not start’

then ask ‘test power cords’

Rule: 3

if task is ‘system start-up’

and problem is ‘system does not start’

and ‘test power cords’ is ok

then ask ‘test Powerstrip’

All the other rules will follow this structure. A set of rules to direct

troubleshooting when the Mac system does not start (in Leonardo code) is

shown in Figure 9.3.

Now we are ready to build a prototype, or in other words to implement the

initial set of rules using an expert system development tool.

How do we choose an expert system development tool?

In general, we should match the features of the problem with the capabilities of the

tool. These tools range from high-level programming languages such as LISP,

PROLOG, OPS, C and Java, to expert system shells. High-level programming

languages offer a greater flexibility and can enable us to meet any project require-

ments, but they do require high-level programming skills. On the other hand, shells,

although they do not have the flexibility of programming languages, provide us with

the built-in inference engine, explanation facilities and the user interface. We do not

need any programming skills to use a shell – we just enter rules in English in the shell’s

knowledge base. This makes shells particularly useful for rapid prototyping.

So how do we choose a shell?

The Appendix provides some details of a few commercial expert systems shells

currently available on the market. This can help you to choose an appropriate

tool; however the internet is rapidly becoming the most valuable source of

information. Many vendors have Web sites, and you can even try and evaluate

their products over the Web.

In general, when selecting an expert system shell, you should consider how

the shell represents knowledge (rules or frames), what inference mechanism it

uses (forward or backward chaining), whether the shell supports inexact reason-

ing and if so what technique it uses (Bayesian reasoning, certainty factors or

fuzzy logic), whether the shell has an ‘open’ architecture allowing access to
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external data files and programs, and how the user will interact with the expert

system (graphical user interface, hypertext).

Today you can buy an expert system shell for less than $500 and run it on

your PC or Mac. You can also obtain an expert system shell for free (for example,

CLIPS). However, you should clearly understand your licence obligations,

especially whether you need to have a distribution licence allowing the end-

user to use your expert system once it is developed.

Figure 9.3 Rules for a prototype of the Mac troubleshooting expert system
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An important area for consideration in choosing a tool is the stability of the

company supplying the tool.

What are indicators of a company’s stability?
There are several important indicators, such as the year founded, number of

employees, total gross income, gross income from intelligent systems products,

and number of products sold. Similar indicators represent the stability of a

particular product. When was the product officially released? How many

versions have been released? How many installations have been made? These

are important questions for determining the development stage of the product.

However, probably the best method for evaluating both products and vendors

is to obtain a list of users, successful applications and installation sites. Just a few

minutes on the phone with the tool’s user brings to light the strengths and

weaknesses of the product and its supplier.

Case study 2: Classification expert systems

I want to develop an intelligent system that can help me to identify

different classes of sail boats. Will an expert system work for this problem?

This is a typical classification problem (to identify a boat means to assign it to

one of the defined classes) and, as we discussed earlier, such problems can be

handled well by both expert systems and neural networks. If you decide to build

an expert system, you should start with collecting some information about mast

structures and sail plans of different sailing vessels. As an example, consider

Figure 9.4, which shows eight classes of sail boats. Each boat can be uniquely

identified by its sail plans.

Figure 9.4 Eight classes of sailing vessels
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A set of rules (in Leonardo code) for the sailing vessel classification is shown in

Figure 9.5. During a dialogue session with the user, the system obtains the number

and position of masts on the unknown vessel as well as the shape of

its mainsail, and then uniquely identifies each of the eight boats shown in

Figure 9.4.

No doubt when the sky is blue and the sea is calm, this system will help us

to identify a sail boat. But this is not always the case. On a rough sea or in

foggy conditions, it is difficult, or even impossible, to see clearly the position of

masts and the shape of the mainsail. Despite the fact that solving real-world

classification problems often involves inexact and incomplete data such as these,

we still can use the expert system approach. However, we need to deal with

uncertainties. Let us apply the certainty factors theory to our problem. This

Figure 9.5 Rules for the boat classification expert system
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Figure 9.6 Uncertainty management in the boat classification expert system
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theory, as you may recall, can manage incrementally acquired evidence, as well

as information with different degrees of belief.

Figure 9.6 shows a complete set of rules for solving the sailing vessel

classification problem with certainty factors. The expert system is required to

classify a boat, or in other words to establish certainty factors for a multivalued

object boat. To apply the evidential reasoning technique, the expert system

prompts the user to input not only the object value but also the certainty

associated with this value. For example, using the Leonardo scale from 0 to 1, we

might obtain the following dialogue (the user’s answers are indicated by arrows;

also note the propagation of certainty factors through the set of rules):

What is the number of masts?

) two

To what degree do you believe that the number of masts is two? Enter a numeric

certainty between 0 and 1.0 inclusive.

) 0.9

Rule: 4
if ‘the number of masts’ is two
then boat is ‘Jib-headed Ketch’ {cf 0.1};

boat is ‘Gaff-headed Ketch’ {cf 0.1};
boat is ‘Jib-headed Yawl’ {cf 0.1};
boat is ‘Gaff-headed Yawl’ {cf 0.1};
boat is ‘Gaff-headed Schooner’ {cf 0.1};
boat is ‘Staysail Schooner’ {cf 0.1}

cf (boat is ‘Jib-headed Ketch’) ¼ cf (‘number of masts’ is two) � 0.1 ¼ 0.9 � 0.1 ¼ 0.09
cf (boat is ‘Gaff-headed Ketch’) ¼ 0.9 � 0.1 ¼ 0.09
cf (boat is ‘Jib-headed Yawl’) ¼ 0.9 � 0.1 ¼ 0.09
cf (boat is ‘Gaff-headed Yawl’) ¼ 0.9 � 0.1 ¼ 0.09
cf (boat is ‘Gaff-headed Schooner’) ¼ 0.9 � 0.1 ¼ 0.09
cf (boat is ‘Staysail Schooner’) ¼ 0.9 � 0.1 ¼ 0.09

boat is Jib-headed Ketch {cf 0.09}
Gaff-headed Ketch {cf 0.09}
Jib-headed Yawl {cf 0.09}
Gaff-headed Yawl {cf 0.09}
Gaff-headed Schooner {cf 0.09}
Staysail Schooner {cf 0.09}

What is the position of the main mast?

) aft the short mast

To what degree do you believe that the main mast position is aft the short mast?

Enter a numeric certainty between 0 and 1.0 inclusive.

) 0.7

Rule: 6
if ‘the number of masts’ is two
and ‘the main mast position’ is ‘aft the short mast’
then boat is ‘Gaff-headed Schooner’ {cf 0.4};

boat is ‘Staysail Schooner’ {cf 0.4}
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cfRule:6 (boat is ‘Gaff-headed Schooner’) ¼ min [cf (‘the number of masts’ is two),
cf (‘the main mast position’ is ‘aft the short mast’)] � 0.4
¼ min [0.9, 0.7] � 0.4 ¼ 0.28

cfRule:6 (boat is ‘Staysail Schooner’) ¼ min [0.9, 0.7] � 0.4 ¼ 0.28

cf (boat is ‘Gaff-headed Schooner’) ¼ cfRule:4 þ cfRule:6 � (1 � cfRule:4)
¼ 0.09 þ 0.28 � (1 � 0.09) ¼ 0.34

cf (boat is ‘Staysail Schooner’) ¼ 0.09 þ 0.28 � (1 � 0.09) ¼ 0.34

boat is Gaff-headed Schooner {cf 0.34}
Staysail Schooner {cf 0.34}
Jib-headed Ketch {cf 0.09}
Gaff-headed Ketch {cf 0.09}
Jib-headed Yawl {cf 0.09}
Gaff-headed Yawl {cf 0.09}

What is the position of the short mast?

) forward of the helm

To what degree do you believe that the short mast position is forward of the helm?

Enter a numeric certainty between 0 and 1.0 inclusive.

) 0.6

Rule: 7
if ‘the number of masts’ is two
and ‘the short mast position’ is ‘forward of the helm’
then boat is ‘Jib-headed Ketch’ {cf 0.4};

boat is ‘Gaff-headed Ketch’ {cf 0.4}

cfRule:7 (boat is ‘Jib-headed Ketch’) ¼ min [cf (‘the number of masts’ is two),
cf (‘the short mast position’ is ‘forward of the helm’)] � 0.4
¼ min [0.9, 0.6] � 0.4 ¼ 0.24

cfRule:7 (boat is ‘Gaff-headed Ketch’) = min [0.9, 0.6] � 0.4 ¼ 0.24

cf (boat is ‘Jib-headed Ketch’) ¼ cfRule:6 þ cfRule:7 � (1 � cfRule:6)
¼ 0.09 þ 0.24 � (1 � 0.09) ¼ 0.30

cf (boat is ‘Gaff-headed Ketch’) ¼ 0.09 þ 0.24 � (1 � 0.09) ¼ 0.30

boat is Gaff-headed Schooner {cf 0.34}
Staysail Schooner {cf 0.34}
Jib-headed Ketch {cf 0.30}
Gaff-headed Ketch {cf 0.30}
Jib-headed Yawl {cf 0.09}
Gaff-headed Yawl {cf 0.09}

What is the shape of the mainsail?

) triangular

To what degree do you believe that the shape of the mainsail is triangular? Enter a

numeric certainty between 0 and 1.0 inclusive.

) 0.8
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Rule: 9
if ‘the number of masts’ is two
and ‘the shape of the mainsail’ is triangular
then boat is ‘Jib-headed Ketch’ {cf 0.4};

boat is ‘Jib-headed Yawl’ {cf 0.4}

cfRule:9 (boat is ‘Jib-headed Ketch’) ¼ min [cf (‘the number of masts’ is two),
cf (‘the shape of the mainsail’ is triangular)] � 0.4
¼ min [0.9, 0.8] � 0.4 ¼ 0.32

cfRule:9 (boat is ‘Jib-headed Yawl’) ¼ min [0.9, 0.8] � 0.4 ¼ 0.32

cf (boat is ‘Jib-headed Ketch’) = cfRule:7 þ cfRule:9 � (1 � cfRule:7)
¼ 0.30 þ 0.32 � (1 � 0.30) ¼ 0.52

cf (boat is ‘Jib-headed Yawl’) ¼ 0.09 þ 0.32 � (1 � 0.09) ¼ 0.38

boat is Jib-headed Ketch {cf 0.52}
Jib-headed Yawl {cf 0.38}
Gaff-headed Schooner {cf 0.34}
Staysail Schooner {cf 0.34}
Gaff-headed Ketch {cf 0.30}
Gaff-headed Yawl {cf 0.09}

Now we can conclude that the boat is probably a Jib-headed Ketch and almost

certainly not a Gaff-headed Ketch or Gaff-headed Yawl.

9.3 Will a fuzzy expert system work for my problem?

We need to decide which problem is a good candidate for fuzzy technology. The

basic approach here is simple: if you cannot define a set of exact rules for each

possible situation, then use fuzzy logic. While certainty factors and Bayesian

probabilities are concerned with the imprecision associated with the outcome of

a well-defined event, fuzzy logic concentrates on the imprecision of the event

itself. In other words, inherently imprecise properties of the problem make it a

good candidate for fuzzy technology.

Fuzzy systems are particularly well suited for modelling human decision

making. We often rely on common sense and use vague and ambiguous terms

while making important decisions. Doctors, for example, do not have a precise

threshold in mind when they decide whether a patient in a post-operative

recovery area should be sent to a general hospital floor. Although hypothermia is

a significant concern after surgery and the patient’s body temperature often

plays a vital role in the doctor’s decision, such factors as the stability of the

patient’s blood pressure, and his or her perceived comfort at discharge are also

taken into account. A doctor makes an accurate assessment not from the

precision of a single parameter (say, a body temperature), but rather from

evaluating several parameters, some of which are expressed in ambiguous

terms (for instance, the patient’s willingness to leave the post-operative recovery

unit).
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Although, most fuzzy technology applications are still reported in control and

engineering, an even larger potential exists in business and finance (Von Altrock,

1997). Decisions in these areas are often based on human intuition, common

sense and experience, rather than on the availability and precision of data.

Decision-making in business and finance is too complex and too uncertain to

lend itself to precise analytical methods. Fuzzy technology provides us with a

means of coping with the ‘soft criteria’ and ‘fuzzy data’ that are often used in

business and finance.

Case study 3: Decision-support fuzzy systems

I want to develop an intelligent system for assessing mortgage

applications. Will a fuzzy expert system work for this problem?

Mortgage application assessment is a typical problem to which decision-support

fuzzy systems can be successfully applied (Von Altrock, 1997).

To develop a decision-support fuzzy system for this problem, we first

represent the basic concept of mortgage application assessment in fuzzy terms,

then implement this concept in a prototype system using an appropriate fuzzy

tool, and finally test and optimise the system with selected test cases.

Assessment of a mortgage application is normally based on evaluating the

market value and location of the house, the applicant’s assets and income, and

the repayment plan, which is decided by the applicant’s income and bank’s

interest charges.

Where do membership functions and rules for mortgage loan assessment

come from?

To define membership functions and construct fuzzy rules, we usually need the

help of experienced mortgage advisors and also bank managers, who develop

the mortgage granting policies. Figures 9.7 to 9.14 show fuzzy sets for linguistic

variables used in our problem. Triangular and trapezoidal membership functions

can adequately represent the knowledge of the mortgage expert.

Figure 9.7 Fuzzy sets of the linguistic variable Market value
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Figure 9.8 Fuzzy sets of the linguistic variable Location

Figure 9.9 Fuzzy sets of the linguistic variable House

Figure 9.10 Fuzzy sets of the linguistic variable Asset

Figure 9.11 Fuzzy sets of the linguistic variable Income
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Next we obtain fuzzy rules. In our case, we simply adapt some of the basic

rules used by Von Altrock in his fuzzy model for mortgage loan assessment (Von

Altrock, 1997). These rules are shown in Figure 9.15.

Complex relationships between all variables used in the fuzzy system can be

represented best by the hierarchical structure shown in Figure 9.16.

To build our system we use the MATLAB Fuzzy Logic Toolbox, one of the most

popular fuzzy tools currently on the market.

The last phase in the development of a prototype system is its evaluation and

testing.

Figure 9.12 Fuzzy sets of the linguistic variable Applicant

Figure 9.13 Fuzzy sets of the linguistic variable Interest

Figure 9.14 Fuzzy sets of the linguistic variable Credit
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To evaluate and analyse the performance of a fuzzy system, we can use the

output surface viewer provided by the Fuzzy Logic Toolbox. Figures 9.17 and

9.18 represent three-dimensional plots of the fuzzy system for mortgage loan

assessment. Finally, the mortgage experts would try the system with several test

cases.

Decision-support fuzzy systems may include dozens, and even hundreds, of

rules. For example, a fuzzy system for credit-risk evaluation developed by BMW

Figure 9.15 Rules for mortgage loan assessment
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Bank and Inform Software used 413 fuzzy rules (Güllich, 1996). Large knowledge

bases are usually divided into several modules in a manner similar to that shown

in Figure 9.16.

In spite of the often large number of rules, decision-support fuzzy systems can be

developed, tested and implemented relatively quickly. For instance, it took just two

person-years to develop and implement the fuzzy system for credit-risk evaluation.

Compare this effort with the 40 person-years it took to develop MYCIN.

Figure 9.16 Hierarchical fuzzy model for mortgage loan assessment

Figure 9.17 Three-dimensional plots for Rule Base 1 and Rule Base 2
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9.4 Will a neural network work for my problem?

Neural networks represent a class of very powerful, general-purpose tools that

have been successfully applied to prediction, classification and clustering prob-

lems. They are used in a variety of areas, from speech and character recognition

to detecting fraudulent transactions, from medical diagnosis of heart attacks to

process control and robotics, from predicting foreign exchange rates to detecting

and identifying radar targets. And the areas of neural network applications

continue to expand rapidly.

The popularity of neural networks is based on their remarkable versatility, abilities

to handle both binary and continuous data, and to produce good results in complex

domains. When the output is continuous, the network can address prediction

problems, but when the output is binary, the network works as a classifier.

Case study 4: Character recognition neural networks

I want to develop a character recognition system. Will a neural network

work for this problem?

Recognition of both printed and handwritten characters is a typical domain

where neural networks have been successfully applied. In fact, optical character

recognition systems were among the first commercial applications of neural

networks.

What is optical character recognition?

It is the ability of a computer to translate character images into a text file, using

special software. It allows us to take a printed document and put it into a

computer in editable form without the need of retyping the document.

To capture the character images we can use a desktop scanner. It either passes

light-sensitive sensors over the illuminated surface of a page or moves a page

through the sensors. The scanner processes the image by dividing it into

hundreds of pixel-sized boxes per inch and representing each box by either 1

(if the box is filled) or 0 (if the box is empty). The resulting matrix of dots is

called a bit map. Bit maps can be stored, displayed and printed by a computer,

Figure 9.18 Three-dimensional plots for Rule Base 3
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but we cannot use a word processor to edit the text – the patterns of dots have to

be recognised as characters by the computer. This is the job for a neural network.

Let us demonstrate an application of a multilayer feedforward network for

printed character recognition. For simplicity, we can limit our task to the

recognition of digits from 0 to 9. In this application, each digit is represented

by a 5 � 9 bit map, as shown in Figure 9.19. In commercial applications, where a

better resolution is required, at least 16 � 16 bit maps are used (Zurada, 1992).

How do we choose the architecture of a neural network for character

recognition?

The architecture and size of a neural network depend on the complexity of the

problem. For example, handwritten character recognition is performed by rather

complex multilayer networks that may include three, or even four, hidden layers

and hundreds of neurons (Zurada, 1992; Haykin, 1999). However, for the printed

digit recognition problem, a three-layer network with a single hidden layer will

give sufficient accuracy.

The number of neurons in the input layer is decided by the number of pixels

in the bit map. The bit map in our example consists of 45 pixels, and thus we

need 45 input neurons. The output layer has 10 neurons – one neuron for each

digit to be recognised.

How do we determine an optimal number of hidden neurons?

Simulation experiments indicate that the number of neurons in the hidden layer

affects both the accuracy of character recognition and the speed of training the net-

work. Complex patterns cannot be detected by a small number of hidden neurons;

however too many of them can dramatically increase the computational burden.

Figure 9.19 Bit maps for digit recognition
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Another problem is overfitting. The greater the number of hidden neurons, the

greater the ability of the network to recognise existing patterns. However,

if the number of hidden neurons is too big, the network might simply memorise

all training examples. This may prevent it from generalising, or producing correct

outputs when presented with data that was not used in training. For instance, the

overfitted character recognition network trained with Helvetica-font examples

might not be able to recognise the same characters in the Times New Roman font.

The practical approach to preventing overfitting is to choose the smallest

number of hidden neurons that yields good generalisation. Thus, at the starting

point, an experimental study could begin with as little as two neurons in the

hidden layer. In our example, we will examine the system’s performance with

2, 5, 10 and 20 hidden neurons and compare results.

The architecture of a neural network (with five neurons in the hidden layer)

for the character recognition problem is shown in Figure 9.20. Neurons in the

hidden and output layers use a sigmoid activation function. The neural network

is trained with the back-propagation algorithm with momentum; the momen-

tum constant is set to 0.95. The input and output training patterns are shown in

Table 9.2. The binary input vectors representing the bit maps of the respective

digits are fed directly into the network.

The network’s performance in our study is measured by the sum of squared

errors. Figure 9.21 demonstrates the results; as can be seen from Figure 9.21(a),

a neural network with two neurons in the hidden layer cannot converge to a

solution, while the networks with 5, 10 and 20 hidden neurons learn relatively

fast. In fact, they converge in less than 250 epochs (each epoch represents an

entire pass through all training examples). Also note that the network with 20

hidden neurons shows the fastest convergence.

Once the training is complete, we must test the network with a set of test

examples to see how well it performs.

Figure 9.20 Neural network for printed digit recognition
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What are the test examples for character recognition? Are they the same
that were used for neural network training?

A test set has to be strictly independent from the training examples. Thus, to test

the character recognition network, we must present it with examples that include

‘noise’ – the distortion of the input patterns. This distortion can be created, for

instance, by adding some small random values chosen from a normal distribution

to the binary input vectors representing bit maps of the ten digits. We evaluate the

performance of the printed digit recognition networks with 1000 test examples

(100 for each digit to be recognised). The results are shown in Figure 9.21(b).

Although the average recognition error of the network with 20 hidden

neurons is the lowest, the results do not demonstrate significant differences

between the networks with 10 and 20 hidden neurons. Both networks can

sustain similar levels of noise without sacrificing their recognition performance.

On this basis, we may conclude that for the digit recognition problem described

here, the use of 10 hidden neurons is adequate.

Can we improve the performance of the character recognition neural

network?

A neural network is as good as the examples used to train it. Therefore, we can

attempt to improve digit recognition by feeding the network with ‘noisy’

examples of digits from 0 to 9. The results of such an attempt are shown in

Figure 9.22. As we expected, there is some improvement in the performance of

the digit recognition network trained with ‘noisy’ data.

This case study illustrated one of the most common applications of multilayer

neural networks trained with the back-propagation algorithm. Modern character

recognition systems are capable of processing different fonts in English, French,

Spanish, Italian, Dutch and several other languages with great accuracy. Optical

character recognition is routinely used by office workers, lawyers, insurance

clerks, journalists – in fact anybody who wants to take a printed (or even

Figure 9.21 Training and performance evaluation of the digit recognition three-layer

neural networks: (a) learning curves; (b) performance evaluation
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handwritten) document and load it into their computer as an editable file.

Handwritten digit recognition systems are widely used in processing zip codes

on mail envelopes (LeCun et al., 1990).

Case study 5: Prediction neural networks

I want to develop an intelligent system for real-estate appraisal. Will a

neural network work for this problem?

Real-estate appraisal is a problem of predicting the market value of a given house

based on the knowledge of the sales prices of similar houses. As we mentioned

earlier, this problem can be solved with expert systems as well as neural

networks. Of course, if we choose to apply a neural network, we will not be able

to understand how an appraisal of a particular house is reached – a neural

network is essentially a black-box to the user and rules cannot be easily extracted

from it. On the other hand, an accurate appraisal is often more important than

understanding how it was done.

In this problem, the inputs (the house location, living area, number of

bedrooms, number of bathrooms, land size, type of heating system, etc.) are

well-defined, and normally even standardised for sharing the housing market

information between different real estate agencies. The output is also well

defined – we know what we are trying to predict. Most importantly, there are

many examples we can use for training the neural network. These examples

are the features of recently sold houses and their sales prices.

Figure 9.22 Performance evaluation of the digit recognition network trained with ‘noisy’

examples

KNOWLEDGE ENGINEERING AND DATA MINING328



Choosing training examples is critical for an accurate prediction. A training

set must cover the full range of values for all inputs. Thus, in the training set for

real estate appraisal, we should include houses that are large and small,

expensive and inexpensive, with and without garages, etc. And the training set

has to be sufficiently large.

But how do we determine when the size of a training set is ‘sufficiently
large’?

A network’s ability to generalise is influenced by three main factors: the size of

the training set, the architecture of the network, and the complexity of the

problem. Once the network architecture is decided, the issue of generalisation is

resolved by the adequacy of the training set. An appropriate number of training

examples can be estimated with Widrow’s rule of thumb, which suggests that,

for a good generalisation, we need to satisfy the following condition (Widrow

and Stearns, 1985; Haykin, 1999):

N ¼ nw

e
; ð9:1Þ

where N is the number of training examples, nw is the number of synaptic

weights in the network, and e is the network error permitted on test.

Thus, if we allow an error of, say, 10 per cent, the number of training

examples should be approximately 10 times bigger than the number of weights

in the network.

In solving prediction problems, including real-estate appraisal, we often

combine input features of different types. Some features, such as the house’s

condition and its location, can be arbitrarily rated from 1 (least appealing) to 10

(most appealing). Some features, such as the living area, land size and sales price,

are measured in actual physical quantities – square metres, dollars, etc. Some

features represent counts (number of bedrooms, number of bathrooms, etc.), and

some are categories (type of heating system).

A neural network works best when all its inputs and outputs vary within the

range between 0 and 1, and thus all the data must be massaged before we can use

them in a neural network model.

How do we massage the data?

Data can be divided into three main types: continuous, discrete and categorical

(Berry and Linoff, 1997), and we normally use different techniques to massage

different types of data.

Continuous data vary between two pre-set values – minimum and maximum,

and can be easily mapped, or massaged, to the range between 0 and 1 as:

massaged value ¼ actual value � minimum value

maximum value � minimum value
ð9:2Þ
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For instance, if the living areas of the houses in training examples range between

59 and 231 square metres, we might set the minimum value to 50 and the

maximum to 250 square metres. Any value lower than the minimum is mapped

to the minimum, and any value higher than the maximum to the maximum.

Thus, a living area of, say, 121 square metres would be massaged as:

massaged value121 ¼ 121 � 50

250 � 50
¼ 0:355

This method works well for most applications.

Discrete data, such as the number of bedrooms and the number of bathrooms,

also have maximum and minimum values. For example, the number of

bedrooms usually ranges from 0 to 4. Massaging discrete data is simple – we

assign an equal space to each possible value on the interval from 0 to 1, as shown

in Figure 9.23.

A neural network can now handle a feature like the number of bedrooms as a

single input. For example, a three-bedroom house would be represented by the

input value of 0.75.

This approach is sufficient for most applications with discrete features that

have up to a dozen possible values. However, if there are more than a dozen

values, a discrete feature should be treated like a continuous one.

Categorical data, such as gender and marital status, can be massaged by

using 1 of N coding (Berry and Linoff, 1997). This method implies that each

categorical value is handled as a separate input. For example, marital status,

which can be either single, divorced, married or widowed, would be represented

by four inputs. Each of these inputs can have a value of either 0 or 1. Thus, a

married person would be represented by an input vector ½0 0 1 0	.
Let us now construct a feedforward neural network for real-estate appraisal.

Figure 9.24 represents a simplified model that was set up by using training

examples with features of the houses recently sold in Hobart.

In this model, the input layer, which includes 10 neurons, passes the

massaged input values to the hidden layer. All input features, except type of

heating system, are treated as single inputs. The type of heating system represents

a categorical type of data, which is massaged with 1 of N coding.

Figure 9.23 Massaging discrete data
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The hidden layer includes two neurons, and the output layer is represented by

a single neuron. Neurons in the hidden and output layers apply sigmoid

activation functions.

The neural network for real-estate appraisal determines the value of a house,

and thus the network output can be interpreted in dollars.

But how do we interpret the network output?

In our example, the network output is represented by continuous values in the

range between 0 and 1. Thus, to interpret the results, we can simply reverse

the procedure we used for massaging continuous data. Suppose, for instance,

that in the training set, sales prices range between $52,500 and $225,000,

and the output value is set up so that $50,000 maps to 0 and $250,000 maps

to 1. Then, if the network output is 0.3546, we can compute that this value

corresponds to:

actual value0:3546 ¼ 0:3546 � ð$250;000 � $50;000Þ þ $50;000 ¼ $120;920

How do we validate results?
To validate results, we use a set of examples never seen by the network. Before

training, all the available data are randomly divided into a training set and a test

set. Once the training phase is complete, the network’s ability to generalise is

tested against examples of the test set.

A neural network is opaque. We cannot see how the network derives its

results. But we still need to grasp relationships between the network inputs and

the results it produces. Although current research into rule extraction from

trained neural networks will eventually bring adequate outcomes, the non-linear

characteristics of neurons may prevent the network from producing simple and

understandable rules. Fortunately, to understand the importance of a particular

input to the network output, we do not need rule extraction. Instead we can use

a simple technique called sensitivity analysis.

Sensitivity analysis determines how sensitive the output of a model is to a

particular input. This technique is used for understanding internal relationships

in opaque models, and thus can be applied to neural networks. Sensitivity

analysis is performed by measuring the network output when each input is set

Figure 9.24 Feedforward neural network for real-estate appraisal
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(one at a time) to its minimum and then its maximum values. Changes in some

inputs may have little effect on the network output – the network is not sensitive

to these inputs. Changes in other inputs have a much greater effect on the

network output – the network is sensitive to these inputs. The amount of

change in the network output represents the network’s sensitivity to a respective

input. In many cases, sensitivity analysis can be as good as the rules extracted

from the trained neural network.

Case study 6: Classification neural networks with competitive

learning

I want to develop an intelligent system that can divide a group of iris

plants into classes and then assign any iris plant to one of these classes.

I have a data set with several variables but I have no idea how to separate

it into different classes because I cannot find any unique or distinctive

features in the data. Will a neural network work for this problem?

Neural networks can discover significant features in input patterns and learn

how to separate input data into different classes. A neural network with

competitive learning is a suitable tool to accomplish this task.

The competitive learning rule enables a single-layer neural network to

combine similar input data into groups or clusters. This process is called

clustering. Each cluster is represented by a single output. In fact, clustering can

be defined as the process of dividing an input space into regions, each of which is

associated with a particular output (Principe et al., 2000).

For this case study, we will use a data set of 150 elements that contains three

classes of iris plants: Iris setosa, versicolor and virginica (Fisher, 1950). Each plant in

the data set is represented by four variables: sepal length, sepal width, petal

length and petal width. The sepal length ranges between 4.3 and 7.9 cm, sepal

width between 2.0 and 4.4 cm, petal length between 1.0 and 6.9 cm, and petal

width between 0.1 and 2.5 cm.

In a competitive neural network, each input neuron corresponds to a single

input, and each competitive neuron represents a single cluster. Thus, the

network for the iris plant classification problem will have four neurons in the

input layer and three neurons in the competitive layer. The network’s architec-

ture is shown in Figure 9.25.

However, before the network is trained, the data must be massaged and then

divided into training and test sets.

The iris plant data are continuous, vary between some minimum and

maximum values, and thus can easily be massaged to the range between 0 and

1 using Eq. (9.2). Massaged values can then be fed to the network as its inputs.

The next step is to generate training and test sets from the available data. The

150-element iris data is randomly divided into a training set of 100 elements and

a test set of 50 elements.

Now we can train the competitive neural network to divide input vectors into

three classes. Figure 9.26 illustrates the learning process with the learning rate of
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0.01. Black dots here represent the input patterns and three spheres denote the

weight vectors of the competitive neurons. The location of each sphere is

determined by the neuron’s weights in the four-dimensional input space.

Initially all weights of the competitive neurons are assigned the same value of

0.5, and thus only one sphere appears in the centre of the input space, as shown

in Figure 9.26(a). After training, the weight vectors correspond to the positions

of the cluster centres, so that each competitive neuron can now respond to input

data in a particular region.

Figure 9.25 Neural network for iris plant classification

Figure 9.26 Competitive learning in the neural network for iris plant classification:

(a) initial weights; (b) weight after 100 iterations; (c) weight after 2000 iterations
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How do we know when the learning process is complete?

In a competitive neural network, unlike a multilayer perceptron trained with the

back-propagation algorithm, there is no obvious way of knowing whether the

learning process is complete or not. We do not know what the desired outputs

are, and thus cannot compute the sum of squared errors – a criterion used by the

back-propagation algorithm. Therefore, we should use the Euclidean distance

criterion instead. When no noticeable changes occur in the weight vectors of

competitive neurons, a network can be considered to have converged. In other

words, if the motion of competitive neurons in the input space remains

sufficiently constrained for several subsequent epochs, then we can assume that

the learning process is complete.

Figure 9.27 shows the dynamics of the learning process for competitive

neurons of the iris classification neural network. The network was trained with

two different learning rates. As can be seen in Figure 9.27(b), if the learning rate

is too high, the behaviour of competitive neurons may become erratic, and the

network may never converge. However, in order to accelerate learning, we can

still use large initial values of the learning rate, but as training progresses the

learning rate must gradually decrease.

How can we associate an output neuron with a particular class? How do we

know, for example, that the competitive neuron 1 represents class Versicolor?

Competitive neural networks enable us to identify clusters in input data.

However, since clustering is an unsupervised process, we cannot use it directly

for labelling output neurons. In fact, clustering is just a preliminary stage of

classification.

In most practical applications, the distribution of data that belong to the

same cluster is rather dense, and there are usually natural valleys between

different clusters. As a result, the position of the centre of a cluster often reveals

distinctive features of the corresponding class. On the other hand, the weight

vectors of the competitive neurons after training provide us with the coordinates

of these centres in the input space. Thus, a competitive neuron can be associated

with a particular class through its weights. Table 9.3 contains the final weights of

Figure 9.27 Learning curves for competitive neurons of the iris classification neural network
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the competitive neurons, decoded values of these weights and the corresponding

classes of the iris plant.

How do we decode weights into iris dimensions?
To decode the weights of the competitive neurons into dimensions of the iris

plant we simply reverse the procedure used for massaging the Iris data. For

example,

Sepal length W11 ¼ 0.4355 � ð7:9 � 4:3Þ þ 4:3 ¼ 5:9 cm

Once the weights are decoded, we can ask an iris plant expert to label the output

neurons.

Can we label the competitive neurons automatically without having to ask

the expert?

We can use a test data set for labelling competitive neurons automatically. Once

training of a neural network is complete, a set of input samples representing the

same class, say class Versicolor, is fed to the network, and the output neuron that

wins the competition most of the time receives a label of the corresponding

class.

Although a competitive network has only one layer of competitive neurons, it

can classify input patterns that are not linearly separable. In classification tasks,

competitive networks learn much faster than multilayer perceptrons trained

with the back-propagation algorithm, but they usually provide less accurate

results.

Table 9.3 Labelling the competitive neurons

Neuron Weights
Dimensions of the iris

palnt, cm

Class of the

iris plant

1 W11 0.4355

W21 0.3022

W31 0.5658

W41 0.5300

Sepal length 5.9

Sepal width 2.7

Petal length 4.4

Petal width 1.4

Versicolor

2 W12 0.6514

W22 0.4348

W32 0.7620

W42 0.7882

Sepal length 6.7

Sepal width 3.0

Petal length 5.5

Petal width 2.0

Virginica

3 W13 0.2060

W23 0.6056

W33 0.0940

W43 0.0799

Sepal length 5.0

Sepal width 3.5

Petal length 1.6

Petal width 0.3

Setosa
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9.5 Will genetic algorithms work for my problem?

Genetic algorithms are applicable to many optimisation problems (Haupt and

Haupt, 1998). Optimisation is essentially the process of finding a better solution

to a problem. This implies that the problem has more than one solution and the

solutions are not of equal quality. A genetic algorithm generates a population of

competing candidate solutions and then causes them to evolve through the

process of natural selection – poor solutions tend to die out, while better

solutions survive and reproduce. By repeating this process over and over again,

the genetic algorithm breeds an optimal solution.

Case study 7: The travelling salesman problem

I want to develop an intelligent system that can produce an optimal

itinerary. I am going to travel by car and I want to visit all major cities in

Western and Central Europe and then return home. Will a genetic

algorithm work for this problem?

This problem is well known as the travelling salesman problem (TSP). Given a

finite number of cities, N, and the cost of travel (or the distance) between each

pair of cities, we need to find the cheapest way (or the shortest route) for visiting

each city exactly once and returning to the starting point.

Although the TSP became known as early as the eighteenth century, only in

the late 1940s and early 1950s was the problem studied seriously and then

publicised as a typical NP-hard problem (Dantzig et al., 1954; Flood, 1955). Such

problems are hard to solve by combinatorial search techniques. The search space

for the TSP includes all possible combinations of N cities, and thus the size of the

search space equals N! (the factorial of the number of cities). Because the number

of cities can be quite large, examining the alternative routes one by one is not

feasible.

The TSP is naturally represented in numerous transportation and logistics

applications such as arranging routes for school buses to pick up children in a

school district, delivering meals to home-bound people, scheduling stacker

cranes in a warehouse, planning truck routes to pick up parcel post, and many

others. A classic example of the TSP is the scheduling of a machine to drill holes

in a circuit board. In this case, the holes are the cities, and the cost of travel is the

time it takes to move the drill head from one hole to the next.

Over the years the size of the TSP has grown dramatically, moving from the

solution of a 49-city problem (Dantzig et al., 1954) up to the recent solution of a

15,112-city problem (Applegate et al., 2001).

Researchers apply different techniques to solve this problem. These tech-

niques include simulated annealing (Laarhoven and Aarts, 1987), discrete linear

programming (Lawler et al., 1985), neural networks (Hopfield and Tank, 1985),

branch-and-bound algorithms (Tschoke et al., 1995), Markov chains (Martin

et al., 1991) and genetic algorithms (Potvin, 1996). Genetic algorithms are

KNOWLEDGE ENGINEERING AND DATA MINING336



particularly suitable for the TSP because they can rapidly direct the search to

promising areas of the search space.

How does a genetic algorithm solve the TSP?
First, we need to decide how to represent a route of the salesman. The most

natural way of representing a route is path representation (Michalewicz, 1996).

Each city is given an alphabetic or numerical name, the route through the cities

is represented as a chromosome, and appropriate genetic operators are used to

create new routes.

Suppose we have nine cities numbered from 1 to 9. In a chromosome, the

order of the integers represents the order in which the cities will be visited by the

salesman. For example, a chromosome

9 71 56 3 2 8 4

represents the route shown in Figure 9.28. The salesman starts at City 1, visits all

the other cities once and returns to the starting point.

How does the crossover operator work in the TSP?
The crossover operator in its classical form cannot be directly applied to the TSP.

A simple exchange of parts between two parents would produce illegal routes

containing duplicates and omissions – some cities would be visited twice while

others would not be visited at all. For example, exchanging parts of the two

parent chromosomes

Parent 2: 3 67 2 51 9 84Parent 1: 9 71 56 3 2 8 4

would produce one route with City 5 visited twice and City 7 omitted, and the

other with City 7 visited twice and City 5 omitted.

1 3 9 84Child 1: 1 2 48Child 2:6 5 3 7 6 9 72 5

Clearly, the classical crossover with a single crossover point does not work in

the TSP. To overcome this problem, a number of two-point crossover operators

were proposed (Goldberg, 1989). For example, Goldberg and Lingle (1985)

suggested the partially mapped crossover, and Davis (1985) introduced the ordered

Figure 9.28 An example of the salesman’s route
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crossover. However, most operators are based on creating an offspring by choosing a

part of a route from one parent and preserving the order of cities from the other

parent. Figure 9.29 demonstrates how the crossover operator works.

First, two crossover points (marked by the
�� character) are chosen uniformly at

random along the strings of two parent chromosomes. Chromosome material

between crossover points defines swap sections. Two offspring chromosomes are

created by interchanging the swap sections between the parents; in Figure 9.29

asterisks represent yet undecided cities. Next, the original cities from each parent

are placed in their original order, omitting cities present in the other parent’s

swap section. For example, cities 1, 9, 4 and 8, which appear in the swap section

from the second parent, are removed from the first parent. The remaining cities

are then placed in the offspring, preserving their original order. As a result, an

offspring represents a route partly determined by each of its parents.

How does the mutation operator works in the TSP?

There are two types of mutation operators: reciprocal exchange and inversion

(Michalewicz, 1996). Figures 9.30(a) and (b) show how they work. The reciprocal

exchange operator simply swaps two randomly selected cities in the chromo-

some. The inversion operator selects two random points along the chromosome

string and reverses the order of the cities between these points.

How do we define a fitness function in the TSP?

While creating genetic operators for the TSP is not trivial, the design of a fitness

function is straightforward – all we need to do is to evaluate the total length of the

7 * *

Figure 9.29 Crossover operators for the TSP

Figure 9.30 Mutation operators for the TSP: (a) original chromosomes; (b) mutated

chromosomes
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route. The fitness of each individual chromosome is determined as the reciprocal of

the route length. In other words, the shorter the route, the fitter the chromosome.

Once the fitness function is defined and genetic operators are constructed, we

can implement and run the GA.

As an example, let us consider the TSP for 20 cities placed in a 1 � 1 square. First,

we choose the size of a chromosome population and the number of generations to

run. We might start with a relatively small population and after a few generations

examine the solutions obtained. Figure 9.31 shows the best route created by 20

chromosomes after 100 generations. As we can see, this route is not optimal and

obviously can be improved. Let us increase the size of the chromosome population

and run the GA again. Figure 9.32(a) demonstrates the results. The total length of

the route decreases by 20 per cent – a very significant improvement.

But how do we know that the GA has actually found the optimal route?

The fact is, we don’t. Only further trial runs on different sizes of chromosome

populations with different rates of crossover and mutation can provide the answer.

Let us, for example, increase the mutation rate up to 0.01. Figure 9.32(b)

shows the results. Although the total distance decreased slightly, the salesman’s

route is still similar to the one shown in Figure 9.32(a). Perhaps we might now

attempt to increase the size of the chromosome population and rerun the GA.

However, it is highly unlikely that we would achieve a noticeably better

solution. Can we be sure that this route is the optimal one? Of course, we wouldn’t

bet on it! However, after several runs, we can be absolutely sure that the route we

obtained is a good one.

9.6 Will a hybrid intelligent system work for my problem?

Solving complex real-world problems requires an application of complex

intelligent systems that combine the advantages of expert systems, fuzzy logic,

neural networks and evolutionary computation. Such systems can integrate

Figure 9.31 Performance graph and the best salesman’s routes created in a population of

20 chromosomes after 100 generations
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human-like expertise in a specific domain with abilities to learn and adapt to a

rapidly changing environment.

Although the field of hybrid intelligent systems is still evolving, and most

hybrid tools are not yet particularly effective, neuro-fuzzy systems have already

matured as an advanced technology with numerous successful applications.

While neural networks can learn from data, the key benefit of fuzzy logic lies in

its ability to model decision-making of humans.

Case study 8: Neuro-fuzzy decision-support systems

I want to develop an intelligent system for diagnosing myocardial

perfusion from cardiac images. I have a set of cardiac images as well as

the clinical notes and physician’s interpretation. Will a hybrid system

work for this problem?

Diagnosis in modern cardiac medicine is based on the analysis of SPECT (Single

Proton Emission Computed Tomography) images. By injecting a patient with

Figure 9.32 Performance graphs and the best routes created in a population of 200

chromosomes: (a) mutation rate is 0.001; (b) mutation rate is 0.01

KNOWLEDGE ENGINEERING AND DATA MINING340



radioactive tracer, two sets of SPECT images are obtained: one is taken 10–15

minutes after the injection when the stress is greatest (stress images), and the

other is taken 2–5 hours after the injection (rest images). The distribution of the

radioactive tracer in the cardiac muscle is proportional to the muscle’s perfusion.

Thus by comparing stress and rest images, a cardiologist can often detect

abnormalities in the heart function.

The SPECT images are usually represented by high-resolution two-dimensional

black-and-white pictures with up to 256 shades of grey. Brighter patches on the

image correspond to well-perfused areas of the myocardium, while darker

patches may indicate the presence of an ischemia. Unfortunately a visual

inspection of the SPECT images is highly subjective; physicians’ interpretations

are therefore often inconsistent and susceptible to errors. Clearly an intelligent

system that can help a cardiologist to diagnose cardiac SPECT images would be of

great value.

For this study, we use 267 cardiac diagnostic cases. Each case is accompanied

by two SPECT images (the stress image and the rest image), and each image is

divided into 22 regions. The region’s brightness, which in turn reflects perfusion

inside this region, is expressed by an integer number between 0 and 100 (Kurgan

et al., 2001). Thus, each cardiac diagnostic case is represented by 44 continuous

features and one binary feature that assigns an overall diagnosis – normal or

abnormal.

The entire SPECT data set consists of 55 cases classified as normal (positive

examples) and 212 cases classified as abnormal (negative examples). This set is

divided into training and test sets. The training set has 40 positive and 40

negative examples. The test set is represented by 15 positive and 172 negative

examples.

Can we train a back-propagation neural network to classify the SPECT

images into normal and abnormal?

A back-propagation neural network can indeed address the SPECT image

classification problem – the size of the training set appears to be sufficiently

large, and the network can work here as a classifier. The number of neurons in

the input layer is determined by the total number of regions in the stress and rest

images. In this example, each image is divided into 22 regions, so we need 44

input neurons. Since SPECT images are to be classified as either normal or

abnormal, we should use two output neurons. Experimental trials show that a

good generalisation can be obtained with as little as 5 to 7 neurons in the hidden

layer. The back-propagation network learns relatively fast and converges to a

solution.

However, when we test the network on the test set, we find that the network’s

performance is rather poor – about 25 per cent of normal cardiac diagnostic cases

are misclassified as abnormal and over 35 per cent of abnormal cases are

misclassified as normal; the overall diagnostic error exceeds 33 per cent. This

indicates that the training set may lack some important examples (a neural

network is only as good as the examples used to train it). Despite this, we still can

significantly improve the accuracy of the diagnosis.

341WILL A HYBRID INTELLIGENT SYSTEM WORK FOR MY PROBLEM?



First, we need to redefine the problem. To train the network, we use the same

number of positive and negative examples. Although in real clinical trials the

ratio between normal and abnormal SPECT images is very different, the mis-

classification of an abnormal cardiac case could lead to infinitely more serious

consequences than the misclassification of a normal case. Therefore, in order to

achieve a small classification error for abnormal SPECT images, we might agree

to have a relatively large error for normal images.

The neural network produces two outputs. The first output corresponds to the

possibility that the SPECT image belongs to the class normal, and the second to

the possibility that the image belongs to the class abnormal. If, for example, the

first (normal) output is 0.92 and the second (abnormal) is 0.16, the SPECT image is

classified as normal, and we can conclude that the risk of a heart attack for this

case is low. On the other hand, if the normal output is low, say 0.17, and the

abnormal output is much higher, say 0.51, the SPECT image is classified as

abnormal, and we can infer that the risk of a heart attack in this case is rather

high. However, if the two outputs are close – say the normal output is 0.51 and

the abnormal 0.49 – we cannot confidently classify the image.

Can we use fuzzy logic for decision-making in medical diagnosis?

Doctors do not keep precise thresholds in mind when they classify SPECT images.

A cardiologist examines perfusion across all regions in the diagnosed image and

also compares the brightness of the corresponding myocardium regions on the

stress and rest images. In fact, doctors often rely on their experience and intuition

in detecting abnormalities of the myocardium. Fuzzy logic provides us with a

means of modelling how the cardiologist assesses the risk of a heart attack.

To build a fuzzy system, we first need to determine input and output variables,

define fuzzy sets and construct fuzzy rules. For our problem, there are two inputs

(NN output 1 and NN output 2) and one output (the risk of a heart attack). The inputs

are normalised to be within the range of [0, 1], and the output can vary between 0

and 100 per cent. Figures 9.33, 9.34 and 9.35 demonstrate fuzzy sets of the linguistic

variables used in the fuzzy system. Fuzzy rules are shown in Figure 9.36.

Figure 9.37 represents a complete structure of the neuro-fuzzy decision-

support system for assessing the risk of a cardiac decease. To build this system,

we can use the MATLAB Neural Network and MATLAB Fuzzy Logic Toolboxes.

Figure 9.33 Fuzzy sets of the neural network output normal
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Once the system is developed, we can study and analyse its behaviour on the

three-dimensional plot shown in Figure 9.38.

The system’s output is a crisp number that represents a patient’s risk of a heart

attack. Based on this number, a cardiologist can now classify cardiac cases with

greater certainty – when the risk is quantified, a decision-maker has a much

better chance of making the right decision. For instance, if the risk is low, say,

smaller than 30 per cent, the cardiac case can be classified as normal, but if the

risk is high, say, greater than 50 per cent, the case is classified as abnormal.

However, cardiac cases with the risk between 30 and 50 per cent cannot be

classified as either normal or abnormal – rather, such cases are uncertain.

Figure 9.34 Fuzzy sets of the neural network output abnormal

 

Figure 9.35 Fuzzy sets of the linguistic variable Risk

Figure 9.36 Fuzzy rules for assessing the risk of a heart decease
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Can we still classify at least some of these uncertain cases using the

knowledge of an experienced cardiologist?

An experienced cardiologist knows that, in normal heart muscle, perfusion at

maximum stress is usually higher than perfusion at rest for the same region of

the muscle. Thus we can expect to make an uncertain case more certain when

we apply the following heuristics to all corresponding regions:

1. If perfusion inside region i at stress is higher than perfusion inside the

same region at rest, then the risk of a heart attack should be decreased.

2. If perfusion inside region i at stress is not higher than perfusion inside

the same region at rest, then the risk of a heart attack should be

increased.

Figure 9.37 Hierarchical structure of the neuro-fuzzy system for risk assessment of the

cardiac decease

KNOWLEDGE ENGINEERING AND DATA MINING344



These heuristics can be implemented in the diagnostic system as follows:

Step 1: Present the neuro-fuzzy system with a cardiac case.

Step 2: If the system’s output is less than 30, classify the presented case as

normal and then stop. If the output is greater than 50, classify the

case as abnormal and stop. Otherwise, go to Step 3.

Step 3: For region 1, subtract perfusion at rest from perfusion at stress. If the

result is positive, decrease the current risk by multiplying its value by

0.99. Otherwise, increase the risk by multiplying its value by 1.01.

Repeat this procedure for all 22 regions and then go to Step 4.

Step 4: If the new risk value is less than 30, classify the case as normal; if the

risk is greater than 50, classify the case as abnormal; otherwise,

classify the case as uncertain.

When we now apply the test set to the neuro-fuzzy system, we find that the

accuracy of diagnosis has dramatically improved – the overall diagnostic error

does not exceed 5 per cent, while only 3 per cent of abnormal cardiac cases are

misclassified as normal. Although we have not improved the system’s perform-

ance on normal cases (over 30 per cent of normal cases are still misclassified as

abnormal), and up to 20 per cent of the total number of cases are classified as

uncertain, the neuro-fuzzy system can actually achieve even better results in

classifying SPECT images than a cardiologist can. Most importantly, the abnor-

mal SPECT images can now be recognised with much greater accuracy.

In this example, the neuro-fuzzy system has a heterogeneous structure – the

neural network and fuzzy system work as independent components (although

they cooperate in solving the problem). When a new case is presented to the

diagnostic system, the trained neural network determines inputs to the fuzzy

Figure 9.38 Three-dimensional plot for the fuzzy rule base
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system. Then the fuzzy system, using predefined fuzzy sets and fuzzy rules, maps

the given inputs to an output, and thereby obtains the risk of a heart attack.

Are there any successful neuro-fuzzy systems with a homogeneous
structure?

A typical example of a neuro-fuzzy system with a homogeneous structure is an

Adaptive Neuro-Fuzzy Inference System (ANFIS). It cannot be divided into two

independent and distinct parts. In fact, an ANFIS is a multilayer neural network

that performs fuzzy inferencing.

Case study 9: Time-series prediction

I want to develop a tool to predict an aircraft’s trajectory during its

landing aboard an aircraft carrier. I have a database of landing trajectories

of various aircraft flown by different pilots, and I also can use RADAR

numerical data, which provide real-time trajectories of landing aircraft. My

goal is to predict an aircraft’s trajectory at least 2 seconds in advance,

based on the aircraft’s current position. Will a neuro-fuzzy system work for

this problem?

The landing of an aircraft, particularly aboard aircraft carriers, is an extremely

complex process. It is affected by such variables as the flight deck’s space

constraints and its motions (both pitch and roll), the aircraft’s ordinance and

fuel load, continuous mechanical preparations, and the most critical of all – time

constraints. The ship may be heaving 10 feet up and 10 feet down, making a

20-foot displacement from a level deck. In addition, it is difficult to see

approaching aircraft at night or during stormy conditions.

Responsibility for the aircraft’s final approach and landing lies with the

Landing Signal Officer (LSO). In fact, the LSO, not the pilot, makes the most

important decision to wave-off (i.e. abort landing). When an aircraft is within 1

nautical mile of the landing deck, which roughly corresponds to 60 seconds in

real time, the aircraft’s flight is carefully observed and guided. During this critical

time, the LSO needs to predict the aircraft’s position at least 2 seconds ahead.

Such problems are known in mathematics as time-series prediction problems.

What is a time series?

A time series can be defined as a set of observations, each one being recorded at a

specific time. For instance, a time series can be obtained by recording the

aircraft’s positions over a time interval of, say, 60 seconds before landing. Real-

world time-series problems are non-linear and often exhibit chaotic behaviour,

which make them hard to model.

Prediction of the aircraft’s landing trajectory is mainly based on the experi-

ence of the LSO (all LSOs are trained pilots). An automatic prediction system can

use aircraft-position data given by the ship’s RADAR, and also data records of

previous landings executed by pilots flying different types of aircraft (Richards,

2002). The system is trained off-line with the past data. Then it is presented
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on-line with the current motion profile, and required to predict the aircraft’s

motion in the next few seconds. A time-series prediction of an aircraft’s

trajectory is shown in Figure 9.39.

To predict an aircraft’s position on-line we will use an ANFIS. It will learn

from time-series data of given landing trajectories in order to determine the

membership function parameters that best allow the system to track these

trajectories.

What do we use as ANFIS inputs?
To predict a future value for a time series, we use values that are already known.

For example, if we want to predict an aircraft’s position 2 seconds ahead, we may

use its current position data as well as data recorded, say, 2, 4 and 6 seconds

before the current position. These four known values represent an input pattern

– a four-dimensional vector of the following form:

x = [x(t � 6) x(t � 4) x(t � 2) x(t)],

where x(t) is the aircraft position recorded at the point in time t.

The ANFIS output corresponds to the trajectory prediction: the aircraft’s

position 2 seconds ahead, x(t + 2).

For this case study, we will use 10 landing trajectories – five for training and

five for testing. Each trajectory is a time series of the aircraft’s position data

points recorded every half a second over a time interval of 60 seconds before

landing. Thus, a data set for each trajectory contains 121 values.

How do we build a data set to train the ANFIS?

Let us consider Figure 9.40; it shows an aircraft trajectory and a 3�5 training data

set created from the trajectory data points sampled every 2 seconds. Input

variables x1, x2, x3 and x4 correspond to the aircraft’s flight positions at (t � 6),

(t � 4), (t � 2) and t, respectively. The desired output corresponds to the

two-second-ahead prediction, x(t þ 2). The training data set shown in Figure

9.40 is built with t equal to 6.0 s (the first row), 6.5 s (the second row) and 7.0 s

(the third row).

By applying the same procedure to a landing trajectory recorded over a time

interval of 60 seconds, we obtain 105 training samples represented by a 105�5

Figure 9.39 On-line time-series predication of an aircraft’s trajectory
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matrix. Thus, the entire data set, which we use for training the ANFIS, is

represented by a 525�5 matrix.

How many membership functions should we assign to each input variable?

A practical approach is to choose the smallest number of membership functions.

Thus, we may begin with two membership functions assigned to each input variable.

Figure 9.41 shows an actual aircraft trajectory and the ANFIS’s output after 1

and 100 epochs of training. As can be seen, even after 100 epochs, the ANFIS’s

Figure 9.40 An aircraft trajectory and a data set built to train the ANFIS

Figure 9.41 Performance of the ANFIS with four inputs and two membership functions

assigned to each input: (a) one epoch; (b) 100 epochs
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performance is still unsatisfactory. We can also see that we have not achieved

any significant improvement by increasing the number of epochs.

How can we improve the ANFIS’s performance?

The ANFIS’s performance can be significantly improved by assigning three

membership functions to each input variable. Figure 9.42 demonstrates the

results: after only one epoch of training the ANFIS predicts the aircraft’s

trajectory more accurately than it did in the previous study after 100 epochs.

Another way of improving time-series prediction is to increase the number of

input variables. Let us, for example, examine an ANFIS with six inputs that

correspond to the aircraft’s flight positions at (t � 5), (t � 4), (t � 3), (t � 2), (t � 1)

and t, respectively. The ANFIS output is still the two-second-ahead prediction.

The training data set is now represented by a 535�7 matrix.

Once we assign the smallest number of membership functions to each input

variable, we can train the ANFIS for 1 epoch and observe its performance on a

test trajectory. Figure 9.43 shows the results. As we can see, the six-input ANFIS

outperforms the ANFIS with four inputs, and provides satisfactory predictions

after just one epoch of training.

9.7 Data mining and knowledge discovery

Data is what we collect and store, and knowledge is what helps us to make

informed decisions. The extraction of knowledge from data is called data

mining. Data mining can also be defined as the exploration and analysis of

large quantities of data in order to discover meaningful patterns and rules (Berry

and Linoff, 2000). The ultimate goal of data mining is to discover knowledge.

Figure 9.42 Performance of the ANFIS with four inputs and three membership functions

assigned to each input after one epoch of training
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We live in a rapidly expanding universe of data. The quantity of data in the

modern world roughly doubles every year, and we often have enormous

difficulties in finding the information we need in huge amounts of data. NASA,

for example, has more data than it can analyse. Human Genome Project

researchers have to store and process thousands of bytes for each of the three

billion DNA bases that make up the human genome. Every day hundreds of

megabytes of data are circulated via the Internet, and we need methods that can

help us to extract meaningful information and knowledge from it.

Data mining is often compared with gold mining. Large quantities of ore

must be processed before the gold can be extracted. Data mining can help us to

find the ‘hidden gold’ of knowledge in raw data. Data mining is fast becoming

essential to the modern competitive business world.

Modern organisations must respond quickly to any change in the market.

This requires rapid access to current data normally stored in operational

databases. However, an organisation must also determine which trends are

relevant, and this cannot be accomplished without access to historical data that

are stored in large databases called data warehouses.

What is a data warehouse?

The main characteristic of a data warehouse is its capacity. A data warehouse

is really big – it includes millions, even billions, of data records. The data stored

Figure 9.43 Performance of the ANFIS with six inputs and two membership functions

assigned to each input: (a) prediction after one epoch; (b) prediction errors
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in a data warehouse is time dependent – linked together by the times of

recording – and integrated – all relevant information from the operational

databases is combined and structured in the warehouse (Adriaans and Zantinge,

1996).

A data warehouse is designed to support decision making in the organisation.

The information needed can be obtained with traditional query tools. These

tools might also help us in discovering important relationships in the data.

What is the difference between a query tool and data mining?

Traditional query tools are assumption-based – a user must ask the right

questions. Let us consider an example. Suppose we obtained data from a study

on high blood pressure. Such data normally includes information on each

person’s age, gender, weight and height, sport activities, and smoking and

drinking habits. With a query tool, a user can select a specific variable, say

smoking, that might affect the outcome, in our case, blood pressure. The user’s

aim here is to compare the number of smokers and non-smokers among people

with high blood pressure. However, by selecting this variable, the user makes an

assumption (or even knows) that there is a strong correlation between high

blood pressure and smoking.

With a data mining tool, instead of assuming certain relationships between

different variables in a data set (and studying these relationships one at a time),

we can determine the most significant factors that influence the outcome. Thus,

instead of assuming a correlation between blood pressure and smoking, we can

automatically identify the most significant risk factors. We can also examine

different groups, or clusters, of people with high blood pressure. Data mining

does not need any hypotheses – it discovers hidden relationships and patterns

automatically.

The structured representation of data in a data warehouse facilitates the

process of data mining.

How is data mining applied in practice?

Although data mining is still largely a new, evolving field, it has already found

numerous applications in banking, finance, marketing and telecommunication.

Many companies use data mining today, but refuse to talk about it. A few areas in

which data mining is used for strategic benefits are direct marketing, trend

analysis and fraud detection (Groth, 1998; Cabena et al., 1998).

In direct marketing, data mining is used for targeting people who are most

likely to buy certain products and services. In trend analysis, it is used to

determine trends in the marketplace, for example, to model the stock market.

In fraud detection, data mining is used to identify insurance claims, cellular

phone calls and credit card purchases that are most likely to be fraudulent.

How do we mine data?

Long before recorded history, people were gathering and analysing data. They

observed the sun, the moon and the stars and discovered patterns in their

movements; as a result, they created calendars.
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Traditionally, data has been analysed with user-driven techniques, where a

user formulates a hypothesis and then tests and validates it with the available

data. A query tool is, in fact, one such technique. However, as we already

know, the success of a query tool in discovering new knowledge is largely based

on the user’s ability to hypothesise, or in other words, on the user’s hunch.

Moreover, even experts are not capable of correlating more than three or, at

best, four variables, while in reality, a data warehouse may include dozens

of variables, and there may be hundreds of complex relationships among

these variables.

Can we use statistics to make sense of the data?

Statistics is the science of collecting, organising and utilising numerical data. It

gives us general information about data: the average and median values,

distribution of values, and observed errors. Regression analysis – one of the most

popular techniques for data analysis – is used to interpolate and extrapolate

observed data.

Statistics is useful in analysing numerical data, but it does not solve data

mining problems, such as discovering meaningful patterns and rules in large

quantities of data.

What are data mining tools?

Data mining is based on intelligent technologies already discussed in this book.

It often applies such tools as neural networks and neuro-fuzzy systems. However,

the most popular tool used for data mining is a decision tree.

What is a decision tree?

A decision tree can be defined as a map of the reasoning process. It describes a

data set by a tree-like structure. Decision trees are particularly good at solving

classification problems.

Figure 9.44 shows a decision tree for identifying households that are

likely to respond to the promotion of a new consumer product, such as a

new banking service. Typically, this task is performed by determining the

demographic characteristics of the households that responded to the promotion

of a similar product in the past. Households are described by their owner-

ship, income, type of bank accounts, etc. One field in the database (named

Household) shows whether a household responded to the previous promotion

campaign.

A decision tree consists of nodes, branches and leaves. In Figure 9.44, each box

represents a node. The top node is called the root node. The tree always starts

from the root node and grows down by splitting the data at each level into new

nodes. The root node contains the entire data set (all data records), and child

nodes hold respective subsets of that set. All nodes are connected by branches.

Nodes that are at the end of branches are called terminal nodes, or leaves.

Each node contains information about the total number of data records at

that node, and the distribution of values of the dependent variable.
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What is the dependent variable?

The dependent variable determines the goal of the study; it is chosen by the user.

In our example, Household is set up as the dependent variable, and it can have a

value of either responded or not responded.

Below the root node we find the next level of the tree. Here, the tree selects

variable Homeownership as a predictor for the dependent variable, and separates

all households according to the predictor’s values. The separation of data is

called a split. In fact, Homeownership is just one of the fields in the database.

How does the decision tree select a particular split?

A split in a decision tree corresponds to the predictor with the maximum

separating power. In other words, the best split does the best job in creating

nodes where a single class dominates.

In our example Homeownership best splits households that responded to the

previous promotion campaign from those that did not. In Figure 9.44, we can see

that, while only 11.2 per cent of all households responded, a great majority of

them were not home owners.

Figure 9.44 An example of a decision tree
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There are several methods of calculating the predictor’s power to separate

data. One of the best known methods is based on the Gini coefficient of

inequality.

What is the Gini coefficient?

The Gini coefficient is, essentially, a measure of how well the predictor separates

the classes contained in the parent node.

Corrado Gini, an Italian economist, introduced a rough measure of the

amount of inequality in the income distribution in a country. Computation of

the Gini coefficient is illustrated in Figure 9.45. The diagonal corresponds to an

absolutely equal distribution of wealth, and the curve above it represents a real

economy, where there is always some inequality in the income distribution. The

curve’s data is ordered from the richest to the poorest members of the society.

The Gini coefficient is calculated as the area between the curve and the diagonal

divided by the area below the diagonal. For a perfectly equal wealth distribution,

the Gini coefficient is equal to zero. For complete inequality when only one

person has all the income, the Gini coefficient becomes unity.

Classification and Regression Trees (CART) use the Gini’s measure of inequality

for selecting splits (Breiman et al., 1984). Let us compare two alternative trees

shown in Figure 9.46. Suppose, at the root node, we have two classes, Class A and

Class B. A decision tree strives to isolate the largest class, that is, to pull out the data

records of Class A into a single node. This ideal, however, can rarely be achieved;

in most cases, a database field that clearly separates one class from the others

does not exist. Therefore, we need to choose among several alternative splits.

A tree shown in Figure 9.46(a) is grown automatically with splits being

selected by the Gini measure of inequality. In Figure 9.46(b), we select the splits

using our own judgements or informed guesswork. The resulting trees are

compared on a gain chart (also called a lift chart) shown in Figure 9.47. The

chart maps the cumulative percentage of instances of Class A at a terminal node

to the cumulative percentage of the total population at the same node. The

diagonal line here represents the outcome if each terminal node contained a

Figure 9.45 Computation of the Gini coefficient of inequality
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Figure 9.46 Selecting an optimal decision tree: (a) splits selected by Gini;
(b) splits selected by guesswork
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random sample of the population. The results clearly demonstrate the advan-

tages of the tree constructed with the Gini splits.

Can we extract rules from a decision tree?

The pass from the root node to the bottom leaf reveals a decision rule. For

example, a rule associated with the right bottom leaf in Figure 9.46(a) can be

represented as follows:

if (Predictor 1 ¼ no)

and (Predictor 4 ¼ no)

and (Predictor 6 ¼ no)

then class ¼ Class A

Case study 10: Decision trees for data mining

I have the results of a community health survey, and I want to understand

which people are at a greater risk of having high blood pressure. Will

decision trees work for this problem?

A typical task for decision trees is to determine conditions that may lead to

certain outcomes. This makes decision trees a good choice for profiling people

with high blood pressure, and community health surveys can provide us with

the necessary data.

High blood pressure, also called hypertension, occurs when the body’s smaller

blood vessels narrow. This causes the heart to work harder to maintain the

pressure, and although the body can tolerate increased blood pressure for

months and even years, eventually the heart may fail.

Blood pressure can be categorised as optimal, normal or high. Optimal

pressure is below 120/80, normal is between 120/80 and 130/85, and a hyper-

tension is diagnosed when blood pressure is over 140/90. Figure 9.48 shows an

example of a data set used in a hypertension study.

Figure 9.47 Gain charts of Class A
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Figure 9.48 A data set for a hypertension study
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Decision trees are as good as the data they represent. Unlike neural networks

and fuzzy systems, decision trees do not tolerate noisy and polluted data.

Therefore, the data must be cleaned before we can start data mining.

Almost all databases are polluted to some degree. In a hypertension study, we

might find that such fields as Alcohol Consumption or Smoking have been left

blank or contain incorrect information. We must also check our data for possible

inconsistencies and typos. However, no matter how hard we try, we can rarely

remove all the pollution in advance – some abnormalities in the data can only be

discovered during the data mining process itself.

We might also attempt to enrich the data. We have, for example, such variables

as weight and height, from which we can easily derive a new variable, obesity. This

variable is calculated with a body-mass index (BMI), that is, the weight in

kilograms divided by the square of the height in metres. Men with BMIs of 27.8

or higher and women with BMIs of 27.3 or higher are classified as obese.

Once data for the hypertension study is prepared, we can choose a decision

tree tool. In our study, we use KnowledgeSEEKER by Angoss – a comprehensive

tool for building classification trees.

KnowledgeSEEKER starts a decision tree with the root node for the dependent

variable Blood Pressure and divides all respondents into three categories:

optimal, normal and high. In this study, 319 people (32 per cent) have optimal,

528 people (53 per cent) normal, and 153 people (15 per cent) high blood

pressure.

Then KnowledgeSEEKER determines the influence of each variable on blood

pressure, and makes a ranked list of the most important variables. In our study,

age emerges at the top of the list, and KnowledgeSEEKER creates the next level of

the tree by splitting respondents by their age, as shown in Figure 9.49. As we can

see, the risk of high blood pressure increases as one ages. Hypertension is

significantly more prevalent after age 50.

We grow the tree by creating new splits. Let us, for example, make the second

level node for age group 51–64. KnowledgeSEEKER splits this group by Obesity.

This is because, in our example, Obesity is found to be a key indicator of whether

someone of age 51 to 64 has high blood pressure. In Figure 9.49, we can see that

48 per cent of obese individuals in this group suffer from hypertension. In fact,

the increase in blood pressure in an ageing population may be due primarily to

weight gain.

As we continue growing the tree node by node, we might find that African

Americans have a much higher risk of hypertension than any other group, and

smoking and heavy drinking increase this risk even further.

Can we look at a specific split?

Decision tree tools, including KnowledgeSEEKER, allow us to look at any split.

Figure 9.50 shows splits by Gender created for age groups 35–50 and 51–64. As

you can see, the results reveal that a higher percentage of men than women have

hypertension before age 51, but after that the ratio reverses, and women are

more likely to have high blood pressure than are men.
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The main advantage of the decision-tree approach to data mining is that it

visualises the solution; it is easy to follow any path through the tree. Relation-

ships discovered by a decision tree can be expressed as a set of rules, which can

then be used in developing an expert system.

Decision trees, however, have several drawbacks. Continuous data, such as

age or income, have to be grouped into ranges, which can unwittingly hide

important patterns.

Another common problem is handling of missing and inconsistent data –

decision trees can produce reliable outcomes only when they deal with ‘clean’

data.

However, the most significant limitation of decision trees comes from their

inability to examine more than one variable at a time. This confines trees to only

the problems that can be solved by dividing the solution space into several

successive rectangles. Figure 9.51 illustrates this point. The solution space of the

hypertension study is first divided into four rectangles by age, then age group

51–64 is further divided into those who are overweight and those who are not.

Figure 9.49 Hypertension study: growing a decision tree
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And finally, the group of obese people is divided by race. Such a ‘rectangular’

classification may not correspond well with the actual distribution of data. This

leads to data fragmentation, when the tree is so large and the amount of data

passing from the root node to the bottom leaves is so small that discovering

meaningful patterns and rules becomes difficult. To minimise fragmentation, we

often need to trim back some of the lower nodes and leaves.

In spite of all these limitations, decision trees have become the most

successful technology used for data mining. An ability to produce clear sets of

rules make decision trees particularly attractive to business professionals.

Figure 9.50 Hypertension study: forcing a split

Figure 9.51 Solution space of the hypertension study
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9.8 Summary

In this chapter, we considered knowledge engineering and data mining. First we

discussed what kind of problems can be addressed with intelligent systems and

introduced six main phases of the knowledge engineering process. Then we

studied typical applications of intelligent systems, including diagnosis, classifi-

cation, decision support, pattern recognition and prediction. Finally, we

examined an application of decision trees in data mining.

The most important lessons learned in this chapter are:

. Knowledge engineering is the process of building intelligent knowledge-based

systems. There are six main steps: assess the problem; acquire data and

knowledge; develop a prototype system; develop a complete system; evaluate

and revise the system; and integrate and maintain the system.

. Intelligent systems are typically used for diagnosis, selection, prediction,

classification, clustering, optimisation and control. The choice of a tool for

building an intelligent system is influenced by the problem type, availability

of data and expertise, and the form and content of the required solution.

. Understanding the problem’s domain is critical for building an intelligent

system. Developing a prototype system helps us to test how well we under-

stand the problem and to make sure that the problem-solving strategy, the

tool selected for building a system, and the techniques for representing

acquired data and knowledge are adequate to the task.

. Intelligent systems, unlike conventional computer programs, are designed to

solve problems that quite often do not have clearly defined ‘right’ and ‘wrong’

solutions. Therefore, the system is normally evaluated with test cases selected

by the user.

. Diagnostic and troubleshooting problems are very attractive candidates for

expert systems. Diagnostic expert systems are easy to develop because most

diagnostic problems have a finite list of possible solutions, involve a limited

amount of well-formalised knowledge, and usually take a human expert a

short time to solve.

. Solving real-world classification problems often involves inexact and incom-

plete data. Expert systems are capable of dealing with such data by managing

incrementally acquired evidence as well as information with different degrees

of belief.

. Fuzzy systems are well suited for modelling human decision-making. Import-

ant decisions are often based on human intuition, common sense and

experience, rather than on the availability and precision of data. Fuzzy

technology provides us with a means of coping with the ‘soft criteria’ and

‘fuzzy data’. Although decision-support fuzzy systems may include dozens,

even hundreds, of rules, they can be developed, tested and implemented

relatively quickly.
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. Neural networks represent a class of general-purpose tools that are success-

fully applied to prediction, classification and clustering problems. They are

used in such areas as speech and character recognition, medical diagnosis,

process control and robotics, identifying radar targets, predicting foreign

exchange rates and detecting fraudulent transactions. The areas of neural

network applications are expanding very rapidly.

. Data mining is the extraction of knowledge from data. It can also be defined

as the exploration and analysis of large quantities of data in order to discover

meaningful patterns and rules. The ultimate goal of data mining is to dis-

cover knowledge.

. Although data mining is still largely a new, evolving field, it has already found

numerous applications. In direct marketing, data mining is used for targeting

people who are most likely to buy certain products and services. In trend

analysis, it is used to identify trends in the marketplace by, for example,

modelling the stock market. In fraud detection, data mining is used to

identify insurance claims, cellular phone calls and credit card purchases that

are most likely to be fraudulent.

. The most popular tool for data mining is a decision tree – a tool that describes

a data set by a tree-like structure. Decision trees are particularly good at

solving classification problems. The main advantage of the decision-tree

approach to data mining is that it visualises the solution; it is easy to follow

any path through the tree. The tree’s ability to produce clear sets of rules

makes it particularly attractive for business professionals.

Questions for review

1 What is knowledge engineering? Describe the main steps in knowledge engineering.

Why is choosing the right tool for the job the most critical part of building an intelligent

system?

2 What are the stages in the knowledge acquisition process? Why is knowledge

acquisition often called a bottleneck of the process of knowledge engineering? How

can the acquired data affect our choice of the system building tool?

3 What is a prototype? What is a test case? How do we test an intelligent system? What

should we do if we have made a bad choice of system-building tool?

4 Why is adopting new intelligent technologies becoming problem-driven, rather than

curiosity-driven, as it often was in the past?

5 What makes diagnosis and troubleshooting problems so attractive for expert system

technology? What is a phone call rule?

6 How do we choose a tool to develop an expert system? What are the advantages of

expert system shells? How do we choose an expert system shell for building an

intelligent system?
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7 Why are fuzzy systems particularly well suited for modelling human decision-making?

Why does fuzzy technology have great potential in such areas as business and finance?

8 What is the basis for the popularity of neural networks? What are the most successful

areas of neural network applications? Explain why and give examples.

9 Why do we need to massage data before using them in a neural network model? How

do we massage the data? Give examples of massaging continuous and discrete data.

What is 1 of N coding?

10 What is data mining? What is the difference between a query tool and data mining?

What are data mining tools? How is data mining applied in practice? Give examples.

11 What is a decision tree? What are dependent variables and predictors? What is the

Gini coefficient? How does a decision tree select predictors?

12 What are advantages and limitations of the decision-tree approach to data mining?

Why are decision trees particularly attractive to business professionals?
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Güllich, H.-P. (1996). Fuzzy logic decision support system for credit risk evaluation,

EUFIT Fourth European Congress on Intelligent Techniques and Soft Computing, pp.

2219–2223.

Haupt, R.L. and Haupt, S.E. (1998). Practical Genetic Algorithms. John Wiley, New York.

Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice

Hall, Englewood Cliffs, NJ.

Hopfield, J.J. and Tank, D.W. (1985). Neural computation of decisions in optimiza-

tion problems, Biological Cybernetics, 52, 141–152.

Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M. and Goodenday, L. (2001).

Knowledge discovery approach to automated cardiac SPECT diagnosis, Artificial

Intelligence in Medicine, 23(2), 149–169.

Laarhoven, P.J.M. and Aarts, E.H.L. (1987). Simulated Annealing: The Theory and

Application. Kluwer Academic Publishers, Norwell, MA.

Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985). The

Traveling Salesman Problem. John Wiley, Chichester.

LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W. and

Jackel, L.D. (1990). Handwritten digit recognition with a back-propagation

network, Advances in Neural Information Processing Systems, D.S. Touretzky, ed.,

Morgan Kaufmann, San Mateo, CA, vol. 2, pp. 396–404.

Martin, O., Otto, S.W. and Felten, E.W. (1991). Large-step Markov chains for the

traveling salesman problem, Complex Systems, 5(3), 299–326.

Michalewicz, Z. (1996). Genetic Algorithms þ Data Structures ¼ Evolutionary Programs,

3rd edn. Springer-Verlag, New York.

Michie, D. (1982). The state of the art in machine learning, Introductory Readings in

Expert Systems, Gordon and Breach, New York, pp. 209–229.

Potvin, J.V. (1996). Genetic algorithms for the traveling salesman problem, Annals of

Operations Research, 63, 339–370.

Principe, J.C., Euliano, N.R. and Lefebvre, W.C. (2000). Neural and Adaptive Systems:

Fundamentals Through Simulations. John Wiley, New York.

Richards, R. (2002). Application of multiple artificial intelligence techniques for an

aircraft carrier landing decision support tool, Proceedings of the IEEE International

Conference on Fuzzy Systems, FUZZ-IEEE’02, Honolulu, Hawaii.

Russell, S.J. and Norvig, P. (2002). Artificial Intelligence: A Modern Approach, 2nd edn.

Prentice Hall, Englewood Cliffs, NJ.

Simon, R. (1987). The morning after, Forbes, October 19, pp. 164–168.

Tschoke, S., Lubling, R. and Monien, B. (1995). Solving the traveling salesman

problem with a distributed branch-and-bound algorithm on a 1024 processor

network, Proceedings of the 9th IEEE International Parallel Processing Symposium,

Santa Barbara, CA, pp. 182–189.

Von Altrock, C. (1997). Fuzzy Logic and NeuroFuzzy Applications in Business and Finance.

Prentice Hall, Upper Saddle River, NJ.

Waterman, D.A. (1986). A Guide to Expert Systems. Addison-Wesley, Reading, MA.

Widrow, B. and Stearns, S.D. (1985). Adaptive Signal Processing. Prentice Hall, Engle-

wood Cliffs, NJ.

Zurada, J.M. (1992). Introduction to Artificial Neural Systems. West Publishing

Company, St Paul, MN.

KNOWLEDGE ENGINEERING AND DATA MINING364



Glossary

The glossary entries are coded using the following abbreviations:

es = expert systems

fl = fuzzy logic

nn = neural networks

ec = evolutionary computation

dm = data mining

ke = knowledge engineering

Action potential

An output signal (also called nerve impulse) of a biological neuron that does not lose

strength over long distances. When an action potential occurs, the neuron is said to ‘fire an

impulse’. [nn]

Activation function

A mathematical function that maps the net input of a neuron to its output. Commonly

used activation functions are: step, sign, linear and sigmoid. Also referred to as Transfer

function. [nn]

Adaptive learning rate

A learning rate adjusted according to the change of error during training. If the error at

the current epoch exceeds the previous value by more than a predefined ratio, the learning

rate is decreased. However, if the error is less than the previous one, the learning rate is

increased. The use of an adaptive learning rate accelerates learning in a multilayer

perceptron. [nn]

Aggregate set

A fuzzy set obtained through aggregation. [fl]

Aggregation

The third step in fuzzy inference; the process of combining clipped or scaled consequent

membership functions of all fuzzy rules into a single fuzzy set for each output variable. [fl]

Algorithm

A set of step-by-step instructions for solving a problem.

AND

A logical operator; when used in a production rule, it implies that all antecedents joined

with AND must be true for the rule consequent to be true. [es]

Antecedent

A conditional statement in the IF part of a rule. Also referred to as Premise. [es]



a-part-of

An arc (also known as ‘part-whole’) that associates subclasses representing components

with a superclass representing the whole. For example, an engine is a-part-of a car. [es]

Approximate reasoning

Reasoning that does not require a precise matching between the IF part of a production

rule with the data in the database. [es]

Arc

A directed labelled link between nodes in a semantic network that indicates the nature of

the connection between adjacent nodes. The most common arcs are is-a and a-part-of. [es]

Architecture

see Topology. [nn]

Artificial neural network (ANN)

An information-processing paradigm inspired by the structure and functions of the human

brain. An ANN consists of a number of simple and highly interconnected processors, called

neurons, which are analogous to the biological neurons in the brain. The neurons are

connected by weighted links that pass signals from one neuron to another. While in a

biological neural network, learning involves adjustments to the synapses, ANNs learn

through repeated adjustments of the weights. These weights store the knowledge needed

to solve specific problems. [nn]

Artificial intelligence (AI)

The field of computer science concerned with developing machines that behave in a way

that would be considered intelligent if observed in humans.

Assertion

A fact derived during reasoning. [es]

Associative memory

The type of memory that allows us to associate one thing with another. For example, we

can recall a complete sensory experience, including sounds and scenes, when we hear only

a few bars of music. We can also recognise a familiar face even in an unfamiliar

environment. An associative ANN recalls the closest ‘stored’ training pattern when

presented with a similar input pattern. The Hopfield network is an example of the

associative ANN. [nn]

Attribute

A property of an object. For example, the object ‘computer’ might have such attributes as

‘model’, ‘processor’, ‘memory’ and ‘cost’. [es]

Axon

A single long branch of a biological neuron that carries the output signal (action

potential) from the cell. An axon may be as long as a metre. In an ANN, an axon is

modelled by the neuron’s output. [nn]

Backward chaining

An inference technique that starts with a hypothetical solution (a goal) and works

backward, matching rules from the rule base with facts from the database until the goal

is either verified or proven wrong. Also referred to as Goal-driven reasoning. [es]
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Back-propagation

see Back-propagation algorithm. [nn]

Back-propagation algorithm

The most popular method of supervised learning. The algorithm has two phases. First, a

training input pattern is presented to the input layer. The network propagates the input

pattern from layer to layer until the output pattern is generated by the output layer. If

this pattern is different from the desired output, an error is calculated and then propagated

backwards through the network from the output layer to the input layer. The weights are

modified as the error is propagated. Also referred to as Back-propagation. [nn]

Bayesian reasoning

A statistical approach to uncertainty management in expert systems that propagates

uncertainties throughout the system based on a Bayesian rule of evidence. [es]

Bayesian rule

A statistical method for updating the probabilities attached to certain facts in the light of

new evidence. [es]

Bidirectional associative memory (BAM)

A class of neural networks that emulates characteristics of associative memory; proposed

by Bart Kosko in the 1980s. The BAM associates patterns from one set to patterns from

another set, and vice versa. Its basic architecture consists of two fully connected layers – an

input layer and an output layer. [nn]

Bit

A binary digit. The smallest unit of information. Data stored in a computer is composed of

bits. [ke]

Bit map

A representation of an image by rows and columns of dots. Bit maps can be stored,

displayed and printed by a computer. Optical scanners are used to transform text or

pictures on paper into bit maps. The scanner processes the image by dividing it into

hundreds of pixels per inch and representing each pixel by either 1 or 0. [ke]

Black-box

A model that is opaque to its user; although the model can produce correct results, its

internal relationships are not known. An example of a black-box is a neural network. To

understand the relationships between outputs and inputs of a black-box, sensitivity

analysis can be used. [ke]

Boolean logic

A system of logic based on Boolean algebra, named after George Boole. It deals with two

truth values: ‘true’ and ‘false’. The Boolean conditions of true and false are often

represented by 0 for ‘false’ and 1 for ‘true’.

Branch

A connection between nodes in a decision tree. [dm]

Building block

A group of genes that gives a chromosome a high fitness. According to the building block

hypothesis, an optimal solution can be found by joining several building blocks together in

a single chromosome. [ec]
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Byte
A set of eight bits that represents the smallest addressable item of information in a modern

computer. The information in a byte is equivalent to a letter in a word. One gigabyte is

about 1,000,000,000 (230 or 1,073,741,824) bytes, approximately equal to 1000 novels. [ke]

C

A general-purpose programming language, originally developed at Bell Labs along with the

UNIX operating system.

C++

An object-oriented extension of C.

CART (Classification and Regression Trees)

A tool for data mining that uses decision trees. CART provides a set of rules that can be

applied to a new data set for predicting outcomes. CART segments data records by creating

binary splits. [dm]

Categorical data

The data that fits into a small number of discrete categories. For example, gender (male or

female) or marital status (single, divorced, married or widowed). [ke]

Centroid technique

A defuzzification method that finds the point, called the centroid or centre of gravity, where

a vertical line would slice the aggregate set into two equal masses. [fl]

Certainty factor

A number assigned to a fact or a rule to indicate the certainty or confidence one has that

this fact or rule is valid. Also referred to as Confidence factor. [es]

Certainty theory

A theory for managing uncertainties in expert systems based on inexact reasoning. It uses

certainty factors to represent the level of belief in a hypothesis given that a particular

event has been observed. [es]

Child

see Offspring. [ec]

Child

In a decision tree, a child is a node produced by splitting the data of a node located at the

preceding hierarchical level of the tree. A child node holds a subset of the data contained in

its parent. [dm]

Chromosome

A string of genes that represent an individual. [ec]

Class

A group of objects with common attributes. Animal, person, car and computer are all classes.

[es]

Class-frame

A frame that represents a class. [es]
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Clipping

A common method of correlating the consequent of a fuzzy rule with the truth value of

the rule antecedent. The method is based on cutting the consequent membership

function at the level of the antecedent truth. Since the top of the membership function

is sliced, the clipped fuzzy set loses some information. [fl]

Cloning

Creating an offspring that is an exact copy of a parent. [ec]

Clustering

The process of dividing a heterogeneous group of objects into homogeneous subgroups.

Clustering algorithms find groups of items that are similar in some respect. For example,

clustering can be used by an insurance company to group customers according to age,

assets, income and prior claims. [ke]

Coding

The process of transforming information from one scheme of representation to another.

[ec]

Cognitive science

The interdisciplinary study of how knowledge is acquired and used. Its contributing

disciplines include artificial intelligence, psychology, linguistics, philosophy, neuro-

science, and education. Also, the study of intelligence and intelligent systems, with

reference to intelligent behaviour as computation.

Common-sense

A general knowledge of how to solve real-world problems, usually obtained through

practical experience. [ke]

Competitive learning

Unsupervised learning in which neurons compete among themselves such that only one

neuron will respond to a particular input pattern. The neuron that wins the ‘competition’

is called the winner-takes-all neuron. Kohonen self-organising feature maps are an

example of an ANN with competitive learning. [nn]

Complement

In classical set theory, the complement of set A is the set of elements that are not members

of A. In the fuzzy set theory, the complement of a set is an opposite of this set. [fl]

Confidence factor

see Certainty factor. [es]

Conflict

A state in which two or more production rules match the data in the database, but only

one rule can actually be fired in a given cycle. [es]

Conflict resolution

A method for choosing which production rule to fire when more than one rule can be

fired in a given cycle. [es]

Conjunction

The logical operator AND that joins together two antecedents in a production rule. [es]
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Connection

A link from one neuron to another to transfer signals. Also referred to as synapse, which is

often associated with the weight that determines the strength of the transferred signal.

[nn]

Consequent

A conclusion or action in the IF part of a rule. [es]

Continuous data

The data that takes an infinite number of possible values on some interval. Examples of

continuous data include height, weight, household income, the living area of a house.

Continuous variables are usually measurements, and do not have to be integers. [ke]

Convergence

An ANN is said to have converged when the error has reached a preset threshold indicating

that the network has learned the task. [nn]

Convergence

A tendency of individuals in the population to be the same. A genetic algorithm is said to

have converged when a solution has been reached. [ec]

Crossover

A reproduction operator that creates a new chromosome by exchanging parts of two

existing chromosomes. [ec]

Crossover probability

A number between zero and one that indicates the probability of two chromosomes

crossing over. [ec]

Darwinism

Charles Darwin’s theory that states that evolution occurs through natural selection,

coupled with random changes of inheritable characteristics. [ec]

Data

Facts, measurements, or observations. Also, a symbolic representation of facts, measure-

ments, or observations. Data is what we collect and store.

Database

A collection of structured data. Database is the basic component of an expert system.

[es]

Data-driven reasoning

see Forward chaining. [es]

Data cleaning

The process of detecting and correcting obvious errors and replacing missing data in a

database. Also referred to as Data cleansing. [dm]

Data cleansing

see Data cleaning. [dm]

Data mining

The extraction of knowledge from data. Also, the exploration and analysis of large
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amounts of data in order to discover meaningful patterns and rules. The ultimate goal of

data mining is to discover knowledge. [dm]

Data record

A set of values corresponding to the attributes of a single object. A data record is a row in a

database. Also referred to as Record. [dm]

Data visualisation

The graphical representation of data that helps the user in understanding the structure and

meaning of the information contained in the data. Also referred to as Visualisation. [dm]

Data warehouse

A large database that includes millions, even billions, of data records designed to support

decision-making in organisations. It is structured for rapid on-line queries and managerial

summaries. [dm]

Decision tree

A graphical representation of a data set that describes the data by tree-like structures. A

decision tree consists of nodes, branches and leaves. The tree always starts from the root

node and grows down by splitting the data at each level into new nodes. Decision trees are

particularly good at solving classification problems. Their main advantage is data

visualisation. [dm]

Decision-support system

An interactive computer-based system designed to help a person or a group of people to

make decisions in a specific domain. [es]

Deductive reasoning

Reasoning from the general to the specific. [es]

Defuzzification

The last step in fuzzy inference; the process of converting a combined output of fuzzy

rules into a crisp (numerical) value. The input for the defuzzification process is the

aggregate set and the output is a single number. [fl]

Degree of membership

A numerical value between 0 and 1 that represents the degree to which an element belongs

to a particular set. Also referred to as Membership value. [fl]

Delta rule

A procedure for updating weights in a perceptron during training. The delta rule

determines the weight correction by multiplying the neuron’s input with the error and

the learning rate. [nn]

Demon

A procedure that is attached to a slot and executed if the slot value is changed or needed. A

demon usually has an IF-THEN structure. Demon and method are often used as synonyms.

[es]

DENDRAL

A rule-based expert system developed at Stanford University in the late 1960s for analysing

chemicals, based on the mass spectral data provided by a mass spectrometer. DENDRAL
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marked a major ‘paradigm shift’ in AI: a shift from general-purpose, knowledge-sparse

methods to domain-specific, knowledge-intensive techniques. [es]

Dendrite

A branch of a biological neuron that transfers information from one part of a cell to

another. Dendrites typically serve an input function for the cell, although many dendrites

also have output functions. In an ANN, dendrites are modelled by inputs to a neuron. [nn]

Deterministic model

A mathematical model that postulates exact relationships between objects (no random

variables are recognised). Given a set of input data, the deterministic model determines its

output with complete certainty. [es]

Discrete data

The data that takes only a finite number of distinct values. Discrete data are usually (but

not necessarily) counts. Examples of discrete data include the number of children in a

family, the number of bedrooms in a house, the number of masts of a sailing vessel. [ke]

Disjunction

The logical operator OR that joins together two antecedents in a production rule. [es]

Domain

A relatively narrow problem area. For example, diagnosing blood diseases within the

medical diagnostics field. Expert systems work in well-focused specialised domains. [es]

Domain expert

see Expert. [es]

EMYCIN

Empty MYCIN, an expert system shell developed at Stanford University in the late 1970s.

It has all features of the MYCIN system except the knowledge of infectious blood diseases.

EMYCIN is used to develop diagnostic expert systems. [es]

End-user

see User. [es]

Epoch

The presentation of the entire training set to an ANN during training. [nn]

Error

The difference between the actual and desired outputs in an ANN with supervised

learning. [nn]

Euclidean distance

The shortest distance between two points in space. In Cartesian coordinates, the Euclidean

distance between two points, (x1, y1) and (x2, y2), is determined by the Pythagorean

theorem
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � x2Þ2 þ ðy1 � y2Þ

2
q

.

Evolution

A series of genetic changes by which a living organism acquires characteristics that

distinguish it from other organisms. [ec]
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Evolution strategy

A numerical optimisation procedure similar to a focused Monte Carlo search. Unlike

genetic algorithms, evolution strategies use only a mutation operator, and do not require

a problem to be represented in a coded form. Evolution strategies are used for solving

technical optimisation problems when no analytical objective function is available, and no

conventional optimisation method exists. [ec]

Evolutionary computation

Computational models used for simulating evolution on a computer. The field of

evolutionary computation includes genetic algorithms, evolution strategies and genetic

programming. [ec]

Exhaustive search

A problem-solving technique in which every possible solution is examined until an

acceptable one is found. [es]

Expert

A person who has deep knowledge in the form of facts and rules and strong practical

experience in a particular domain. Also referred to as Domain expert. [es]

Expert system

A computer program capable of performing at the level of a human expert in a narrow

domain. Expert systems have five basic components: the knowledge base, the database,

the inference engine, the explanation facilities and the user interface. [es]

Expert system shell

A skeleton expert system with the knowledge removed. Also referred to as Shell. [es]

Explanation facility

A basic component of an expert system that enables the user to query the expert system

about how it reached a particular conclusion and why it needs a specific fact to do so. [es]

Facet

A means of providing extended knowledge about an attribute of a frame. Facets are used

to establish the attribute value, control the user queries, and tell the inference engine how

to process the attribute. [es]

Fact

A statement that has the property of being either true or false. [es]

Feedback neural network

A topology of an ANN in which neurons have feedback loops from their outputs to their

inputs. An example of a feedback network is the Hopfield network. Also referred to as

Recurrent network. [nn]

Feedforward neural network

A topology of an ANN in which neurons in one layer are connected to the neurons in the

next layer. The input signals are propagated in a forward direction on a layer-by-layer basis.

An example of a feedforward network is a multilayer perceptron. [nn]

Field

A space allocated in a database for a particular attribute. (In a spreadsheet, fields are called
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cells.) A tax form, for example, contains a number of fields: your name and address, tax file

number, taxable income, etc. Every field in a database has a name, called the field name.

[dm]

Firing a rule

The process of executing a production rule, or more precisely, executing the THEN part of

a rule when its IF part is true. [es]

Fitness

The ability of a living organism to survive and reproduce in a specific environment. Also, a

value associated with a chromosome that assigns a relative merit to that chromosome. [ec]

Fitness function

A mathematical function used for calculating the fitness of a chromosome. [ec]

Forward chaining

An inference technique that starts from the known data and works forward, matching the

facts from the database with production rules from the rule base until no further rules

can be fired. Also referred to as Data-driven reasoning. [es]

Frame

A data structure with typical knowledge about a particular object. Frames are used to

represent knowledge in a frame-based expert system. [es]

Frame-based expert system

An expert system in which frames represent a major source of knowledge, and both

methods and demons are used to add actions to the frames. In frame-based systems,

production rules play an auxiliary role. [es]

Fuzzification

The first step in fuzzy inference; the process of mapping crisp (numerical) inputs into

degrees to which these inputs belong to the respective fuzzy sets. [fl]

Fuzzy expert system

An expert system that uses fuzzy logic instead of Boolean logic. A fuzzy expert system is a

collection of fuzzy rules and membership functions that are used to reason about data.

Unlike conventional expert systems, which use symbolic reasoning, fuzzy expert systems

are oriented towards numerical processing. [fl]

Fuzzy inference

The process of reasoning based on fuzzy logic. Fuzzy inference includes four steps:

fuzzification of the input variables, rule evaluation, aggregation of the rule outputs and

defuzzification. [fl]

Fuzzy logic

A system of logic developed for representing conditions that cannot be easily described by

the binary terms ‘true’ and ‘false’. The concept was introduced by Lotfi Zadeh in 1965.

Unlike Boolean logic, fuzzy logic is multi-valued and handles the concept of partial truth

(truth values between ‘completely true’ and ‘completely false’). Also referred to as Fuzzy

set theory. [fl]
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Fuzzy rule

A conditional statement in the form: IF x is A THEN y is B, where x and y are linguistic

variables, and A and B are linguistic values determined by fuzzy sets. [fl]

Fuzzy set

A set with fuzzy boundaries, such as ‘short’, ‘average’ or ‘tall’ for men’s height. To represent

a fuzzy set in a computer, we express it as a function and then map the elements of the set

to their degree of membership. [fl]

Fuzzy set theory

see Fuzzy logic. [fl]

Fuzzy singleton

A fuzzy set with a membership function equal to unity at a single point on the universe

of discourse and zero everywhere else. Also referred to as Singleton. [fl]

Fuzzy variable

A quantity that can take on linguistic values. For example, the fuzzy variable ‘tempera-

ture’, might have values such as ‘hot’, ‘medium’ and ‘cold’. [fl]

Gene

A basic unit of a chromosome that controls the development of a particular feature of a

living organism. In Holland’s chromosome, a gene is represented by either 0 or 1. [ec]

General Problem Solver (GPS)

An early AI system that attempted to simulate human methods of problem solving. The

GPS was the first attempt to separate the problem-solving technique from the data.

However, the program was based on the general-purpose search mechanism. This

approach, now referred to as a weak method, applied weak information about the problem

domain, and resulted in weak performance of the program in solving real-world problems.

[es]

Generation

One iteration of a genetic algorithm. [ec]

Generalisation

The ability of an ANN to produce correct results from data on which it has not been

trained. [nn]

Genetic algorithm

A type of evolutionary computation inspired by Darwin’s theory of evolution. A genetic

algorithm generates a population of possible solutions encoded as chromosomes, evalu-

ates their fitness, and creates a new population by applying genetic operators – crossover

and mutation. By repeating this process over many generations, the genetic algorithm

breeds an optimal solution to the problem. [ec]

Genetic programming

An application of genetic algorithms to computer programs. Genetic programming is

most easily implemented where the programming language permits a program to be

manipulated as data and the newly created data to be executed as a program. This is one of

the reasons why LISP is used as the main language for genetic programming. [ec]
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Genetic operator

An operator in genetic algorithms or genetic programming, which acts upon the

chromosome in order to produce a new individual. Genetic operators include crossover

and mutation. [ec]

Global minimum

The lowest value of a function over the entire range of its input parameters. During

training, the weights of an ANN are adjusted to find the global minimum of the error

function. [nn]

Global optimisation

Finding the true optimum in the entire search space. [ec]

Goal

A hypothesis that an expert system attempts to prove. [es]

Goal-driven reasoning

see Backward chaining. [es]

Hard limit activation function

An activation function represented by the step and sign functions. Also referred to as

Hard limiter. [nn]

Hard limiter

see Hard limit activation function. [nn]

Hebb’s Law

The learning law introduced by Donald Hebb in the late 1940s; it states that if neuron i is

near enough to excite neuron j and repeatedly participates in its activation, the synaptic

connection between these two neurons is strengthened and neuron j becomes more

sensitive to stimuli from neuron i. This law provides the basis for unsupervised learning.

[nn]

Hebbian learning

Unsupervised learning that relates a change in the weight of the synaptic connection

between a pair of neurons to a product of the incoming and outgoing signals. [nn]

Hedge

A qualifier of a fuzzy set used to modify its shape. Hedges include adverbs such as ‘very’,

‘somewhat’, ‘quite’, ‘more or less’ and ‘slightly’. They perform mathematical operations of

concentration by reducing the degree of membership of fuzzy elements (e.g. very tall

men), dilation by increasing the degree of membership (e.g. more or less tall men) and

intensification by increasing the degree of membership above 0.5 and decreasing those

below 0.5 (e.g. indeed tall men). [fl]

Heuristic

A strategy that can be applied to complex problems; it usually – but not always – yields a

correct solution. Heuristics, which are developed from years of experience, are often used

to reduce complex problem solving to more simple operations based on judgment.

Heuristics are often expressed as rules of thumb. [es]
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Heuristic search

A search technique that applies heuristics to guide the reasoning, and thus reduce the

search space for a solution. [es]

Hidden layer

A layer of neurons between the input and output layers; called ‘hidden’ because neurons

in this layer cannot be observed through the input/output behaviour of the neural

network. There is no obvious way to know what the desired output of the hidden layer

should be. [nn]

Hidden neuron

A neuron in the hidden layer. [nn]

Hopfield network

A single-layer feedback neural network. In the Hopfield network, the output of each

neuron is fed back to the inputs of all other neurons (there is no self-feedback). The

Hopfield network usually uses McCulloch and Pitts neurons with the sign activation

function. The Hopfield network attempts to emulate characteristics of the associative

memory. [nn]

Hybrid system

A system that combines at least two intelligent technologies. For example, combining a

neural network with a fuzzy system results in a hybrid neuro-fuzzy system. [ke]

Hypothesis

A statement that is subject to proof. Also, a goal in expert systems that use backward

chaining. [es]

Individual

A single member of a population. [ec]

Inductive reasoning

Reasoning from the specific to the general. [es]

Inference chain

The sequence of steps that indicates how an expert system applies rules from the rule base

to reach a conclusion. [es]

Inference engine

A basic component of an expert system that carries out reasoning whereby the expert

system reaches a solution. It matches the rules provided in the rule base with the facts

contained in the database. Also referred to as Interpreter. [es]

Inference technique

The technique used by the inference engine to direct search and reasoning in an expert

system. There are two principal techniques: forward chaining and backward chaining.

[es]

Inheritance

The process by which all characteristics of a class-frame are assumed by the instance-

frame. Inheritance is an essential feature of frame-based systems. A common use of

inheritance is to impose default features on all instance-frames. [es]
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Initialisation

The first step of the training algorithm that sets weights and thresholds to their initial

values. [nn]

Input layer

The first layer of neurons in an ANN. The input layer accepts input signals from the

outside world and redistributes them to neurons in the next layer. The input layer rarely

includes computing neurons and does not process input patterns. [nn]

Input neuron

A neuron in the input layer. [nn]

Instance

A specific object from a class. For example, class ‘computer’ may have instances IBM Aptiva

S35 and IBM Aptiva S9C. In frame-based expert systems, all characteristics of a class are

inherited by its instances. [es]

Instance

A member of the schema. For example, chromosomes and are the

instances of the schema . [ec]

Instance-frame

A frame that represents an instance. [es]

Instantiation

The process of assigning a specific value to a variable. For example, ‘August’ is an

instantiation of the object ‘month’. [es]

Intelligence

The ability to learn and understand, to solve problems and to make decisions. A machine is

thought intelligent if it can achieve human-level performance in some cognitive task.

Interpreter

see Inference engine. [es]

Intersection

In classical set theory, an intersection between two sets contains elements shared by these

sets. For example, the intersection of tall men and fat men contains all men who are tall and

fat. In fuzzy set theory, an element may partly belong to both sets, and the intersection is

the lowest membership value of the element in both sets. [fl]

is-a

An arc (also known as ‘a-kind-of’) that associates a superclass with its subclasses in a

frame-based expert system. For example, if car is-a vehicle, then car represents a subclass of

more general superclass vehicle. Each subclass inherits all features of the superclass. [es]

Knowledge

A theoretical or practical understanding of a subject. Knowledge is what helps us to make

informed decisions.

Knowledge acquisition

The process of acquiring, studying and organising knowledge, so that it can be used in a

knowledge-based system. [ke]

1 1 1 0 1 0 1 0
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Knowledge base

A basic component of an expert system that contains knowledge about a specific domain.

[es]

Knowledge-based system

A system that uses stored knowledge for solving problems in a specific domain. A

knowledge-based system is usually evaluated by comparing its performance with the

performance of a human expert. [es]

Knowledge engineer

A person who designs, builds and tests a knowledge-based system. The knowledge

engineer captures the knowledge from the domain expert, establishes reasoning methods

and chooses the development software. [ke]

Knowledge engineering

The process of building a knowledge-based system. There are six main steps: assess the

problem; acquire data and knowledge; develop a prototype system; develop a complete

system; evaluate and revise the system; integrate and maintain the system. [ke]

Knowledge representation

The process of structuring knowledge to be stored in a knowledge-based system. In AI,

production rules are the most common type of knowledge representation. [ke]

Kohonen self-organising feature maps

A special class of ANNs with competitive learning introduced by Teuvo Kohonen in the

late 1980s. The Kohonen map consists of a single layer of computation neurons with two

types of connections: forward connections from the neurons in the input layer to the

neurons in the output layer, and lateral connections between neurons in the output layer.

The lateral connections are used to create a competition between neurons. A neuron learns

by shifting its weights from inactive connections to active ones. Only the winning neuron

and its neighbourhood are allowed to learn. [nn]

Layer

A group of neurons that have a specific function and are processed as a whole. For

example, a multilayer perceptron has at least three layers: an input layer, an output layer

and one or more hidden layers. [nn]

Leaf

A bottom-most node of a decision tree; a node without children. Also referred to as a

Terminal node. [dm]

Learning

The process by which weights in an ANN are adjusted to achieve some desired behaviour

of the network. Also referred to as Training. [nn]

Learning rate

A positive number less than unity that controls the amount of changes to the weights in

the ANN from one iteration to the next. The learning rate directly affects the speed of

network training. [nn]

Learning rule

A procedure for modifying weights during training in an ANN. [nn]
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Linear activation function

An activation function that produces an output equal to the net input of a neuron.

Neurons with the linear activation function are often used for linear approximation. [nn]

Linguistic variable

A variable that can have values that are language elements, such as words and phrases. In

fuzzy logic, terms linguistic variable and fuzzy variable are synonyms. [fl]

Linguistic value

A language element that can be assumed by a fuzzy variable. For example, the fuzzy

variable ‘income’ might assume such linguistic values as ‘very low’, ‘low’, ‘medium’, ‘high’

and ‘very high’. Linguistic values are defined by membership functions. [fl]

LISP (LISt Processor)

One of the oldest high-level programming languages. LISP, which was developed by John

McCarthy in the late 1950s, has become a standard language for artificial intelligence.

Local minimum

The minimum value of a function over a limited range of its input parameters. If a local

minimum is encountered during training, the desired behaviour of an ANN may never be

achieved. The usual method of getting out of a local minimum is to randomise the weights

and continue training. [nn]

Machine learning

An adaptive mechanism that enable computers to learn from experience, learn by example

and learn by analogy. Learning capabilities improve the performance of an intelligent

system over time. Machine learning is the basis of adaptive systems. The most popular

approaches to machine learning are artificial neural networks and genetic algorithms.

Massaging data

The process of modifying the data before it is applied to the input layer of an ANN. [nn]

McCulloch and Pitts neuron model

A neuron model proposed by Warren McCulloch and Walter Pitts in 1943, which is still

the basis for most artificial neural networks. The model consists of a linear combiner

followed by a hard limiter. The net input is applied to the hard limiter, which produces an

output equal to þ1 if its input is positive and �1 if it is negative. [nn]

Membership function

A mathematical function that defines a fuzzy set on the universe of discourse. Typical

membership functions used in fuzzy expert systems are triangles and trapezoids. [fl]

Membership value

see Degree of membership. [fl]

Metaknowledge

Knowledge about knowledge; knowledge about the use and control of domain knowledge

in expert systems. [es]

Metarule

A rule that represents metaknowledge. A metarule determines a strategy for the use of

task-specific rules in the expert system. [es]
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Method

A procedure associated with an attribute of a frame. A method can determine the

attribute’s value or execute a series of actions when the attribute’s value changes. Most

frame-based expert systems use two types of methods: WHEN CHANGED and WHEN

NEEDED. Method and demon are often used as synonyms. [es]

Momentum constant

A positive constant less than unity included in the delta rule. The use of momentum

accelerates learning in a multilayer perceptron and helps to prevent it from getting

caught in a local minimum. [nn]

Multilayer perceptron

The most common topology of an ANN in which perceptrons are connected together to

form layers. A multilayer perceptron has the input layer, at least one hidden layer and the

output layer. The most popular method of training a multilayer perceptron is back-

propagation. [nn]

Multiple inheritance

The ability of an object or a frame to inherit information from multiple superclasses. [es]

Mutation

A genetic operator that randomly changes the gene value in a chromosome. [ec]

Mutation probability

A number between zero and one that indicates the probability of mutation occurring in a

single gene. [ec]

MYCIN

A classic rule-based expert system developed in the 1970s for the diagnosis of infectious

blood diseases. The system used certainty factors for managing uncertainties associated

with knowledge in medical diagnosis. [es]

Natural selection

The process by which the most fit individuals have a better chance to mate and reproduce,

and thereby to pass their genetic material on to the next generation. [ec]

Neural computing

A computational approach to modelling the human brain that relies on connecting a large

number of simple processors to produce complex behaviour. Neural computing can be

implemented on specialised hardware or with software, called artificial neural networks,

that simulates the structure and functions of the human brain on a conventional

computer. [nn]

Neural network

A system of processing elements, called neurons, connected together to form a network.

The fundamental and essential characteristic of a biological neural network is the ability to

learn. Artificial neural networks also have this ability; they are not programmed, but learn

from examples through repeated adjustments of their weights. [nn]

Neuron

A cell that is capable of processing information. A typical neuron has many inputs

(dendrites) and one output (axon). The human brain contains roughly 1012 neurons.
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Also, a basic processing element of an ANN that computes the weighted sum of the

input signals and passes the result through its activation function to generate an output.

[nn]

Node

A decision point of a decision tree. [dm]

Noise

A random external disturbance that affects a transmitted signal. Noisy data contain errors

associated with the way the data was collected, measured and interpreted. [dm]

NOT

A logical operator used for representing the negation of a statement. [es]

Object

A concept, abstraction or thing that can be individually selected and manipulated, and that

has some meaning for the problem at hand. All objects have identity and are clearly

distinguishable. Michael Black, Audi 5000 Turbo, IBM Aptiva S35 are examples of objects. In

object-oriented programming, an object is a self-contained entity that consists of both

data and procedures to manipulate the data. [es]

Object-oriented programming

A programming method that uses objects as a basis for analysis, design and implementa-

tion. [es]

Offspring

An individual that was produced through reproduction. Also referred to as a child. [ec]

Operational database

A database used for the daily operation of an organisation. Data in operational databases is

regularly updated. [dm]

OPS

A high-level programming language derived from LISP for developing rule-based expert

systems. [es]

Optimisation

An iterative process of improving the solution to a problem with respect to a specified

objective function. [ec]

OR

A logical operator; when used in a production rule, it implies that if any of the

antecedents joined with OR is true, then the rule consequent must also be true. [es]

Overfitting

A state in which an ANN has memorised all the training examples, but cannot generalise.

Overfitting may occur if the number of hidden neurons is too big. The practical approach

to preventing overfitting is to choose the smallest number of hidden neurons that yields

good generalisation. Also referred to as Over-training. [nn]

Over-training

see Overfitting. [nn]
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Output layer

The last layer of neurons in an ANN. The output layer produces the output pattern of the

entire network. [nn]

Output neuron

A neuron in the output layer. [nn]

Parallel processing

A computational technique that carries out multiple tasks simultaneously. The human

brain is an example of a parallel information-processing system: it stores and processes

information simultaneously throughout the whole biological neural network, rather than

at specific locations. [nn]

Parent

An individual that produces one or more other individuals, known as offspring or child.

[ec]

Parent

In a decision tree, a parent node is a node that splits its data between nodes at the next

hierarchical level of the tree. The parent node contains a complete data set, while child

nodes hold subsets of that set. [dm]

Pattern recognition

Identification of visual or audio patterns by computers. Pattern recognition involves

converting patterns into digital signals and comparing them with patterns already stored

in the memory. Artificial neural networks are successfully applied to pattern recognition,

particularly in such areas as voice and character recognition, radar target identification and

robotics. [nn]

Perceptron

The simplest form of a neural network, suggested by Frank Rosenblatt. The operation of

the perceptron is based on the McCulloch and Pitts neuron model. It consists of a single

neuron with adjustable synaptic weights and a hard limiter. The perceptron learns a task

by making small adjustments in the weights to reduce the difference between the actual

and desired outputs. The initial weights are randomly assigned and then updated to obtain

an output consistent with the training examples. [nn]

Performance

A statistical evaluation of fitness. [ec]

Performance graph

A graph that shows the average performance of the entire population and the perform-

ance of the best individual in the population over the chosen number of generations. [ec]

Pixel

Picture Element; a single point in a graphical image. Computer monitors display pictures

by dividing the screen into thousands (or millions) of pixels arranged into rows and

columns. The pixels are so close together that they appear as one image. [ke]

Population

A group of individuals that breed together. [ec]
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Premise

see Antecedent. [es]

Probability

A quantitative description of the likely occurrence of a particular event. Probability is

expressed mathematically as a number with a range between zero (an absolute impossi-

bility) to unity (an absolute certainty). [es]

Procedure

A self-contained arbitrary piece of computer code. [es]

Production

A term often used by cognitive psychologists to describe a rule. [es]

Production rule

A statement expressed in the IF (antecedent) THEN (consequent) form. If the antecedent is

true, then the consequent is also true. Also referred to as Rule. [es]

PROLOG

A high-level programming language developed at the University of Marseilles in the 1970s

as a practical tool for programming in logic; a popular language for artificial intelligence.

PROSPECTOR

An expert system for mineral exploration developed by the Stanford Research Institute in

the late 1970s. To represent knowledge, PROSPECTOR used a combined structure that

incorporated production rules and a semantic network. [es]

Query tool

Software that allows a user to create and direct specific questions to a database. A query

tool provides the means for extracting the desired information from a database. [dm]

Reasoning

The process of drawing conclusions or inferences from observations, facts or assumptions.

[es]

Record

see Data record. [dm]

Recurrent network

see Feedback network. [nn]

Reproduction

The process of creating offspring from parents. [ec]

Root

see Root node. [dm]

Root node

The top-most node of a decision tree. The tree always starts from the root node and grows

down by splitting the data at each level into new nodes. The root node contains the entire

data set (all data records), and child nodes hold subsets of that set. Also referred to as Root.

[dm]
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Roulette wheel selection

A method of selecting a particular individual in the population to be a parent with a

probability equal to its fitness divided by the total fitness of the population. [ec]

Rule

see Production rule. [es]

Rule base

The knowledge base that contains a set of production rules. [es]

Rule-based expert system

An expert system whose knowledge base contains a set of production rules. [es]

Rule evaluation

The second step in fuzzy inference; the process of applying the fuzzy inputs to the

antecedents of fuzzy rules, and determining the truth value for the antecedent of each

rule. If a given rule has multiple antecedents, the fuzzy operation of intersection or union

is carried out to obtain a single number that represents the result of evaluating the

antecedent. [fl]

Rule of thumb

A rule that expresses a heuristic. [es]

Scaling

A method of correlating the consequent of a fuzzy rule with the truth value of the rule

antecedent. It is based on adjusting the original membership function of the rule

consequent by multiplying it by the truth value of the rule antecedent. Scaling helps to

preserve the original shape of the fuzzy set. [fl]

Search

The process of examining a set of possible solutions to a problem in order to find an

acceptable solution. [es]

Search space

The set of all possible solutions to a given problem. [es]

Self-organised learning

see Unsupervised learning. [nn]

Semantic network

A method of knowledge representation by a graph made up of labelled nodes and arcs,

where the nodes represent objects and the arcs describe relationships between these

objects. [es]

Set

A collection of elements (also called members).

Set theory

The study of sets or classes of objects. The set is the basic unit in mathematics. Classical set

theory does not acknowledge the fuzzy set, whose elements can belong to a number of sets

to some degree. Classical set theory is bivalent: the element either does or does not belong

to a particular set. That is, classical set theory gives each member of the set the value of 1,

and all members that are not within the set a value of 0.
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Schema

A bit string of ones, zeros and asterisks, where each asterisk can assume either value 1 or 0.

For example, the schema stands for a set of four 4-bit strings with each string

beginning with 1 and ending with 0. [ec]

Schema theorem

A theorem that relates the expected number of instances of a given schema in the

consequent generation with the fitness of this schema and the average fitness of

chromosomes in the current generation. The theorem states that a schema with above-

average fitness tends to occur more frequently in the next generation. [ec]

Selection

The process of choosing parents for reproduction based on their fitness. [ec]

Sensitivity analysis

A technique of determining how sensitive the output of a model is to a particular input.

Sensitivity analysis is used for understanding relationships in opaque models, and can be

applied to neural networks. Sensitivity analysis is performed by measuring the network

output when each input is set (one at a time) to its minimum and then its maximum

values. [ke]

Shell

see Expert system shell. [es]

Sigmoid activation function

An activation function that transforms the input, which can have any value between plus

and minus infinity, into a reasonable value in the range between 0 and 1. Neurons with

this function are used in a multilayer perceptron. [nn]

Sign activation function

A hard limit activation function that produces an output equal to þ1 if its input is

positive and �1 if it is negative. [nn]

Singleton

see Fuzzy singleton. [fl]

Slot

A component of a frame in a frame-based system that describes a particular attribute

of the frame. For example, the frame ‘computer’ might have a slot for the attribute ‘model’.

[es]

Soma

The body of a biological neuron. [nn]

Step activation function

A hard limit activation function that produces an output equal to þ1 if its input is

positive and 0 if it is negative. [nn]

Supervised learning

A type of learning that requires an external teacher, who presents a sequence of training

examples to the ANN. Each example contains the input pattern and the desired output

pattern to be generated by the network. The network determines its actual output

and compares it with the desired output from the training example. If the output from

1 * * 0
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the network differs from the desired output specified in the training example, the

network weights are modified. The most popular method of supervised learning is back-

propagation. [nn]

Survival of the fittest

The law according to which only individuals with the highest fitness can survive to pass on

their genes to the next generation. [ec]

Symbol

A character or a string of characters that represents some object. [es]

Symbolic reasoning

Reasoning with symbols. [es]

Synapse

A chemically mediated connection between two neurons in a biological neural network,

so that the state of the one cell affects the state of the other. Synapses typically occur

between an axon and a dendrite, though there are many other arrangements. See also

Connection. [nn]

Synaptic weight

see Weight. [nn]

Terminal node

see Leaf. [dm]

Test set

A data set used for testing the ability of an ANN to generalise. The test data set is strictly

independent of the training set, and contains examples that the network has not

previously seen. Once training is complete, the network is validated with the test set. [nn]

Threshold

A specific value that must be exceeded before the output of a neuron is generated. For

example, in the McCulloch and Pitts neuron model, if the net input is less than the

threshold, the neuron output is �1. But if the net input is greater than or equal to

the threshold, the neuron becomes activated and its output attains a value þ1. Also

referred to as Threshold value. [nn]

Threshold value

see Threshold. [nn]

Topology

A structure of a neural network that refers to the number of layers in the neural network,

the number of neurons in each layer, and connections between neurons. Also referred to

as Architecture. [nn]

Toy problem

An artificial problem, such as a game. Also, an unrealistic adaptation of a complex problem.

[es]

Training

see Learning. [nn]
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Training set

A data set used for training an ANN. [nn]

Transfer function

see Activation function. [nn]

Truth value

In general, the terms truth value and membership value are used as synonyms. The truth

value reflects the truth of a fuzzy statement. For example, the fuzzy proposition x is A (0.7)

suggests that element x is a member of fuzzy set A to the degree 0.7. This number

represents the truth of the proposition. [fl]

Turing test

A test designed to determine whether a machine can pass a behaviour test for intelligence.

Turing defined the intelligent behaviour of a computer as the ability to achieve human-

level performance in cognitive tasks. During the test a human interrogates someone or

something by questioning it via a neutral medium such as a remote terminal. The computer

passes the test if the interrogator cannot distinguish the machine from a human.

Union

In classical set theory, the union of two sets consists of every element that falls into either

set. For example, the union of tall men and fat men contains all men who are either tall or

fat. In fuzzy set theory, the union is the reverse of the intersection, that is, the union is

the largest membership value of the element in either set. [fl]

Universe of discourse

The range of all possible values that are applicable to a given variable. [fl]

Unsupervised learning

A type of learning that does not require an external teacher. During learning an ANN

receives a number of different input patterns, discovers significant features in these

patterns and learns how to classify input data into appropriate categories. Also referred to

as Self-organised learning. [nn]

User

A person who uses a knowledge-based system when it is developed. For example, the user

might be an analytical chemist determining the molecular structures, a junior doctor

diagnosing an infectious blood disease, an exploration geologist trying to discover a new

mineral deposit, or a power system operator seeking an advice in an emergency. Also

referred to as End-user. [es]

User interface

A means of communication between a user and a machine. [es]

Visualisation

see Data visualisation. [dm]

Weight

The value associated with a connection between two neurons in an ANN. This value
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determines the strength of the connection and indicates how much of the output of one

neuron is fed to the input of another. Also referred to as Synaptic weight. [nn]

WHEN CHANGED method

A procedure attached to a slot of a frame in a frame-based expert system. The WHEN

CHANGED method is executed when new information is placed in the slot. [es]

WHEN NEEDED method

A procedure attached to a slot of a frame in a frame-based expert system. The WHEN

NEEDED method is executed when information is needed for the problem solving, but the

slot value is unspecified. [es]
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Appendix:
AI tools and vendors

Expert system shells

ACQUIRE

A knowledge acquisition and expert system development tool. Knowledge is represented by

production rules and pattern-based action tables. ACQUIRE does not require special

training in building expert systems. A domain expert can create a knowledge base and

develop applications without help from the knowledge engineer.

Acquired Intelligence Inc.

Suite 205, 1095 McKenzie Avenue

Victoria, BC, Canada V8P 2L5

Phone: +1 (250) 479-8646

Fax: +1 (250) 479-0764

http://www.aiinc.ca/acquire/acquire.shtml

Blaze Advisor

A sophisticated tool for developing rule-based object-oriented expert systems. Advisor has

two components: Advisor Builder (a development tool with visual editors, powerful

debugging facilities and wizards, which integrate rule-based applications with databases,

Java objects and COBRA objects) and Advisor Engine (a high-performance inference engine).

Advisor includes mechanisms for servicing simultaneous users, scheduling deployments,

performing dynamic load balancing, and reducing memory requirements.

Fair Isaac Corporation

200 Smith Ranch Road

San Rafael, CA 94903, USA

Phone: +1 (415) 472-2211

Fax: +1 (415) 492-5691

http://www.fairisaac.com/Fairisaac/Solutions/Product+Index/Blaze+Advisor/

Exsys CORVID

An expert system development tool for converting complex decision-making processes

into a form that can be incorporated into a Web page. CORVID, which is based on the

Visual Basic model, provides an object-oriented structure. It also uses logic blocks –

supersets of rules and trees – which can be run by forward or backward chaining. CORVID

applications are delivered via a small Java applet that allows robust interface design

options.



EXSYS, Inc.

2155 Louisiana Blvd NE, Suite 3100

Albuquerque, NM 87110, USA

Phone: +1 (505) 888-9494

http://www.exsys.com/

Flex

A frame-based expert system toolkit. Supports frame-based reasoning with inheritance,

rule-based programming and data-driven procedures. Flex has its own English-like knowl-

edge specification language (KSL). The main structures in Flex are frames and instances

with slots for organising objects, default and current values for storing data, demons and

constraints for adding functionality to slot values, rules and relations for expressing

knowledge and expertise, functions and actions for defining imperative processes, and

questions and answers for end-user interaction. The KSL supports mathematical, Boolean

and conditional expressions.

Logic Programming Associates Ltd

Studio 4, RVPB, Trinity Road

London SW18 3SX, England

Phone: +44 (0) 20-8871-2016

Fax: +44 (0) 20-8874-0449

e-mail: support@lpa.co.uk

http://www.lpa.co.uk/

G2

An interactive object-oriented, graphical environment for the development and on-line

deployment of intelligent systems. Objects are organised in hierarchical classes with

multiple inheritance. Developers can model an application by representing and connect-

ing objects graphically. Expert knowledge is expressed by rules. G2 uses forward chaining

to respond automatically whenever new data arrive, and backward chaining to invoke rules

or procedures. G2 works efficiently in real time.

Gensym Corporation

52 Second Avenue

Burlington, MA 01803, USA

Phone: +1 (781) 265-7100

Fax: +1 (781) 265-7101

e-mail: info@gensym.com

http://www.gensym.com/manufacturing/g2_overview.shtml

GURU

A rule-based expert system development environment that offers a wide variety of

information processing tools. GURU uses fuzzy logic and certainty factors to handle

uncertainties in human knowledge. At the core of GURU is KGL, a knowledge and object-

based fourth-generation programming language, including a self-contained relational

database.

Micro Data Base Systems, Inc.

Research Park, 1305 Cumberland Ave

PO Box 2438, West Lafayette, IN 47996-2438, USA
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Phone: +1 (765) 463-7200

Fax: +1 (765) 463-1234

http://www.mdbs.com/html/guru.html

Intellix

A comprehensive tool developed by combining neural network and expert system

technologies. The tool provides a user-friendly environment where no programming skills

are required. Domain knowledge is represented by production rules and examples. The

system uses a combined technique of pattern matching (neural networks) and rule

interpretation, and is capable of learning in real time.

Intellix Denmark

Nikolaj Plads 32, 2

DK-1067 Copenhagen K, Denmark

Phone: +45 3314-8100

Fax: +45 3314-8130

e-mail: info@intellix.com

http://www.intellix.com/products/designer/designer.html

JESS

The Java Expert System Shell ( JESS) is available as a free download (including its complete

Java source code) from Sandia National Laboratories. JESS was originally inspired by CLIPS

(C Language Integrated Production System), but has grown into a complete tool of its own.

The JESS language is still compatible with CLIPS – JESS scripts are valid CLIPS scripts and

vice versa. JESS adds many features to CLIPS, including backward chaining and the ability

to manipulate and directly reason about Java objects. Despite being implemented in Java,

JESS runs faster than CLIPS.

Sandia National Laboratories, California

PO Box 969

Livermore, CA 94551, USA

e-mail: casmith@sandia.gov

http://herzberg.ca.sandia.gov/jess

Level5 Object

A tool for developing frame-based expert systems. Objects in a knowledge base are created

via class declarations. Rules and demons describe rules-of-thumb and cause-and-effect

relationships for making decisions and triggering certain events or actions during a session.

Databases are managed by the Object-Oriented Database Management System, which allows

the system to obtain attribute values of a class from an external database.

Rule Machines Corporation

51745 396th Ave

Frazee, MN 56544, USA

Phone: +1 (218) 334-3960

Fax: +1 (218) 334-3957

e-mail: info@RuleMachines.com

http://www.rulemachines.com/
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M.4

A powerful tool for developing rule-based expert systems. Domain knowledge is repres-

ented by production rules. M.4 employs both backward and forward chaining inference

techniques. It uses certainty factors for managing inexact knowledge, and supports object-

oriented programming within the system.

Teknowledge

1810 Embarcadero Road

Palo Alto, CA 94303, USA

Phone: +1 (650) 424-0500

Fax: +1 (650) 493-2645

e-mail: info@teknowledge.com

http://www.teknowledge.com/m4/

Visual Rule Studio

Visual Rule Studio is based on the Production Rule Language (PRL) and inference engines of

Level5 Object. The language and inference engines of Visual Rule Studio are compatible

with Level5 Object. Visual Rule Studio is built specifically for Visual Basic developers –

Visual Rule Studio installs into Visual Basic as an ActiveX Designer. It allows developers to

create intelligent objects as reusable components.

Rule Machines Corporation

51745 396th Ave

Frazee, MN 56544, USA

Phone: +1 (218) 334-3960

Fax: +1 (218) 334-3957

e-mail: info@RuleMachines.com

http://www.rulemachines.com/VRS/Index.htm

XMaster

The system consists of two basic packages: XMaster Developer and XMaster User. With XMaster

Developer the user creates a knowledge base simply by building up a list of possible hypotheses

and a list of items of evidence. The items of evidence are then associated with the relevant

hypotheses. XMaster also enables the user to incorporate uncertain or approximate relation-

ships into the knowledge base. It uses Bayesian reasoning for managing uncertainties.

Chris Naylor Research Limited

14 Castle Gardens

Scarborough, North Yorkshire

YO11 1QU, England

Phone: +44 (1) 723-354-590

e-mail: ChrisNaylor@ChrisNaylor.co.uk

http://www.chrisnaylor.co.uk/

XpertRule

A tool for developing rule-based expert systems. Domain knowledge is represented by

decision trees, examples, truth tables and exception trees. Decision trees are the main

knowledge representation method. Examples relate outcomes to attributes. A truth table is

an extension to examples – it represents a set of examples covering every possible com-

bination of cases. From examples, truth tables and exception trees, XpertRule automatically
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generates a decision tree. XpertRule also uses fuzzy reasoning, which can be integrated with

crisp reasoning and with GA optimisation.

Attar Software UK Intellicrafters (Attar Software USA)

Newlands Road Renaissance International Corporation

Leigh WN7 4HN, England Newburyport, MA 01950, USA

Phone: +44 (0) 870-60-60-870 Phone: +1 (978) 465-5111

Fax: +44 (0) 870-60-40-156 Fax: +1 (978) 465-0666

e-mail: info@attar.co.uk e-mail: info@IntelliCrafters.com

http://www.attar.com/

Fuzzy logic tools

CubiCalc

A software tool for creating and using fuzzy rules. With CubiCalc, the user can write

English-like IF-THEN rules and use a graphical editor to define fuzzy sets. The user can then

apply the rules to data or use them in a simulated dynamic scenario. CubiCalc is

particularly useful for rapid prototyping. No programming is needed to set up plots,

numeric displays, input and output data files, and interactive data-entry windows.

HyperLogic Corporation

PO Box 300010

Escondido, CA 92030-0010, USA

Phone: +1 (760) 746-2765

Fax: +1 (760) 746-4089

http://www.hyperlogic.com/cbc.html

FIDE

The Fuzzy Inference Development Environment (FIDE) is a complete environment for

developing a fuzzy system. It supports all phases of the development process, from the

concept to the implementation. FIDE serves as the developer’s guide in creating a fuzzy

controller, including its implementation as a software or hardware solution. Hardware

solutions are realised in the Motorola microcontroller units; the code is generated auto-

matically. FIDE also supports C code by creating ANSI C code for a fuzzy inference unit.

Aptronix, Inc.

PO Box 70188

Sunnyvale, CA 94086-0188, USA

Phone: +1 (408) 261-1898

Fax: +1 (408) 490-2729

e-mail: support@aptronix.com

http://www.aptronix.com/fide/

FlexTool

FlexTool offers the Genetic Algorithm, Neural Network and Fuzzy System MATLAB Tool-

box for building intelligent systems. The readable full-source code is included with the

toolbox; it can be easily customised as well as tailored to the user’s needs. FlexTool (Fuzzy

System) facilitates the development of fuzzy expert systems, fuzzy predictors and fuzzy

controllers. It provides a graphical user interface for tuning membership functions.
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CynapSys, LLC

160 Paradise Lake Road

Birmingham, AL 35244, USA

Phone/Fax: +1 (530) 325-9930

e-mail: info@cynapsys.com

http://www.flextool.com/

FLINT

The Fuzzy Logic INferencing Toolkit (FLINT) is a versatile fuzzy logic inference system that

makes fuzzy rules available within a sophisticated programming environment. FLINT

supports the concepts of fuzzy variables, fuzzy qualifiers and fuzzy modifiers (linguistic

hedges). Fuzzy rules are expressed in a simple, uncluttered syntax. Furthermore, they can

be grouped into matrices, commonly known as fuzzy associative memory (FAM). FLINT

provides a comprehensive set of facilities for programmers to construct fuzzy expert

systems and decision-support applications on all LPA-supported hardware and software

platforms.

Logic Programming Associates Ltd

Studio 4, RVPB, Trinity Road

London SW18 3SX, England

Phone: +44 (0) 208-871-2016

Fax: +44 (0) 208-874-0449

e-mail: support@lpa.co.uk

http://www.lpa.co.uk/

FuzzyCLIPS

FuzzyCLIPS is an extension of the CLIPS (C Language Integrated Production System) from

NASA, which has been widely distributed for a number of years. It enhances CLIPS by

providing a fuzzy reasoning capability such that the user can represent and manipulate

fuzzy facts and rules. FuzzyCLIPS can deal with exact, fuzzy and combined reasoning,

allowing fuzzy and normal terms to be freely mixed in the rules and facts of an expert

system. The system uses two basic inexact concepts: fuzziness and uncertainty. FuzzyCLIPS

is available as a free download.

Integrated Reasoning Group

NRC Institute for Information Technology

1200 Montreal Road, Building M-50

Ottawa, ON Canada, K1A 0R6

Phone: +1 (613) 993-8557

Fax: +1 (613) 952-0215

e-mail: Bob.Orchard@nrc-cnrc.gc.ca

http://ai.iit.nrc.ca/IR_public/fuzzy/fuzzyClips/fuzzyCLIPSIndex.html

Fuzzy Control Manager

The Fuzzy Control Manager (FCM) provides a graphical user interface (GUI) that allows the

user to display any relevant data while developing, debugging and optimising a fuzzy

system. Offers the point-and-click rule editor and graphical editor of membership

functions. The FCM enables the user to generate a source code in C assembler or binary

codes.
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TransferTech GmbH

Cyriaksring 9A

D-38118 Braunschweig, Germany

Phone: +49 (531) 890-255

Fax: +49 (531) 890-355

e-mail: info@transfertech.de

http://www.transfertech.de/wwwe/fcm/fcme_gen.htm

FuzzyJ Toolkit

The FuzzyJ Toolkit is a set of Java classes that provide the capability for handling fuzzy

reasoning. It is useful for exploring fuzzy logic in a Java setting. The work is based on earlier

experience building the FuzzyCLIPS extension to the CLIPS Expert System Shell. The

toolkit can be used stand-alone to create fuzzy rules and do reasoning. It can also be used

with JESS, the Java Expert System Shell from Sandia National Laboratories. FuzzyJ is

available as a free download.

Integrated Reasoning Group

NRC Institute for Information Technology

1200 Montreal Road, Building M-50

Ottawa, ON Canada, K1A 0R6

Phone: +1 (613) 993-8557

Fax: +1 (613) 952-0215

e-mail: Bob.Orchard@nrc-cnrc.gc.ca

http://ai.iit.nrc.ca/IR_public/fuzzy/fuzzyJToolkit.html

Fuzzy Judgment Maker

A tool for developing fuzzy decision-support systems. It breaks down the decision scenario

into small parts that the user can focus on and input easily. It then uses theoretically

optimal methods of combining the scenario pieces into a global interrelated solution. The

Judgment Maker provides graphical tools for negotiating decisions and making the

consensus from two decisions.

Fuzzy Systems Engineering

12223 Wilsey Way

Poway, CA 92064, USA

Phone: +1 (858) 748-7384

e-mail: mmcneill@fuzzysys.com

http://www.fuzzysys.com/

Fuzzy Query

Fuzzy Query is an application based on Win32. It allows the user to query a database using

the power and semantic flexibility of the Structured Query Language (SQL) – the most

popular method for retrieving information from databases. Fuzzy Query provides informa-

tion beyond the strict restrictions of Boolean logic. The user not only sees the candidates

that best meet some specified criteria, but can also observe the candidates that just barely

miss the cut. Each record returned by a Fuzzy Query shows data ranked by the degree to

which it meets the specified criteria.

Fuzzy Systems Solutions

Sonalysts Inc.
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215 Parkway North

Waterford, CT 06385, USA

Phone: +1 (860) 526-8091

Fax: +1 (860) 447-8883

e-mail: FuzzyQuery@Sonalysts.com

http://fuzzy.sonalysts.com/

FuzzyTECH

FuzzyTECH is the world’s leading family of software development tools for fuzzy logic and

neural–fuzzy solutions. It provides two basic products: Editions for technical applications

and Business for applications in finance and business. The tree view enables the structured

access to all components of a fuzzy logic system under design in the same way that

Windows Explorer lets users browse the structure of their PCs. The Editor and Analyser

windows allow each component of a fuzzy system to be designed graphically.

Inform Software Corporation INFORM GmbH

222 South Riverside Plaza Pascalstrasse 23

Suite 1410 Chicago, IL 60606, USA D-52076 Aachen, Germany

Phone: +1 (312) 575-0578 Phone: +49 2408-945-680

Fax: +1 (312) 575-0581 Fax: +49 2408-945-685

e-mail: office@informusa.com e-mail: hotline@inform-ac.com

http://www.fuzzytech.com/

Mathematica Fuzzy Logic Package

The package represents built-in functions that facilitate in defining inputs and outputs,

creating fuzzy sets, manipulating and combining fuzzy sets and relations, applying fuzzy

inference functions, and incorporating defuzzification routines. Experienced fuzzy logic

designers find it easy to use the package to research, model, test and visualise highly

complex systems. Fuzzy Logic requires Mathematica 4 or 5 and is available for Windows,

Mac OS X, Linux and most Unix platforms.

Wolfram Research, Inc.

100 Trade Center Drive

Champaign, IL 61820-7237, USA

Phone: +1 (217) 398-0700

Fax: +1 (217) 398-1108

http://www.wolfram.com/products/applications/fuzzylogic/

MATLAB Fuzzy Logic Toolbox

Features a simple point-and-click interface that guides the user through the steps of fuzzy

design, from set-up to diagnosis. It provides built-in support for the latest fuzzy logic

methods, such as fuzzy clustering and adaptive neuro-fuzzy learning. The toolbox’s

interactive graphics let the user visualise and fine-tune system behaviour.

The MathWorks

3 Apple Hill Drive

Natick, MA 01760-2098, USA

Phone: +1 (508) 647-7000

Fax: +1 (508) 647-7001

http://www.mathworks.com/products/fuzzylogic/
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rFLASH

rFLASH (Rigel’s Fuzzy Logic Applications Software Helper) is a code generator that creates a

set of subroutines and tables in the MCS-51 assembly language to implement Fuzzy Logic

Control (FLC) applications. The code generated runs on the 8051 family of microcon-

trollers. rFLASH software includes a code generator and a simulator. As a code generator,

rFLASH creates the FLC code directly from a high-level Control Task Description File

(CTDF). As a simulator, rFLASH generates the outputs from given inputs on the PC. The

simulator can test several inputs and fine-tune the terms or rules accordingly.

Rigel Corporation

PO Box 90040

Gainesville, FL 32607, USA

Phone: +1 (352) 384-3766

e-mail: techsupport@rigelcorp.com

http://www.rigelcorp.com/flash.htm

TILShell

The windows-based software development tool for designing, debugging and testing fuzzy

expert systems, including embedded control systems. It offers real-time on-line debugging

and tuning fuzzy rules, membership functions and rule weights; 3-D visualisation tools;

fully integrated graphical simulation of fuzzy systems and conventional methods; and

ANSI and Keil C code generation from the Fuzzy-C compiler.

Ortech Engineering Inc.

16250 Highway 3, Suite B6

Webster, TX 77598, USA

Phone: +1 (281) 480-8904

Fax: +1 (281) 480-8906

e-mail: togai@ortech-engr.com

http://www.ortech-engr.com/fuzzy/TilShell.html

Neural network tools

Attrasoft Predictor & Attrasoft DecisionMaker

Neural-network-based tools that use the data in databases or spreadsheets to detect subtle

changes, predict results and make business decisions. DecisionMaker is especially good for

applications to terabyte or gigabyte databases because of its accuracy and speed. The

software does not require any special knowledge of building neural networks.

Attrasoft

PO Box 13051

Savannah, GA 31406, USA

Fax: +1 (510) 652-6589

e-mail: webmaster@attrasoft.com

http://attrasoft.com/products.htm

BackPack Neural Network System

Designed for users interested in developing solutions to real business problems using state-

of-the-art data mining tools. This system uses a back-propagation algorithm. It reads ASCII
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text files and dBASE database files. The system has built-in data preprocessing capabilities,

including fuzzy sets, 1-of-N, built-in graphical analysis tools for model evaluation and

explanation, thermometer transforms, and training data set creation. A working trial

version of BackPack is available as a free download.

Z Solutions, Inc.

6595G Roswell Rd, Suite 662

Atlanta, GA 30328, USA

e-mail: info@zsolutions.com

http://www.zsolutions.com/backpack.htm

BrainMaker

The neural network software for business and marketing forecasting; stock, bond,

commodity and futures prediction; pattern recognition; medical diagnosis – almost any

activity where the user needs special insight. The user does not need any special

programming or computer skills. With more than 25,000 systems sold, BrainMaker is the

world’s best-selling software for developing neural networks.

California Scientific Software

10024 Newtown Rd

Nevada City, CA 95959, USA

Phone: +1 (530) 478-9040

USA toll free: 1-800-284-8112

Fax: +1 (530) 478-9041

e-mail: sales@calsci.com

http://www.calsci.com/

EasyNN-plus

EasyNN-plus is a neural network software system for Microsoft Windows. It can generate

multilayer neural networks from imported files. Numerical data, text or images can be used

to create the neural networks. The neural networks can then be trained, validated and

queried. All diagrams, graphs and input/output data produced or used by the neural

networks can be displayed. The graphs, grid and network diagrams are updated dynami-

cally, so the user can see how everything is working. Neural networks can then be used for

data analysis, prediction, forecasting, classification and time-series projection.

Stephen Wolstenholme

18 Seymour Road

Cheadle Hulme

United Kingdom

e-mail: steve@tropheus.demon.co.uk

http://www.easynn.com/easynnplus.html

MATLAB Neural Network Toolbox

The Neural Network Toolbox is a complete neural network engineering environment

within MATLAB. It has a modular, open and extensible design that provides comprehen-

sive support for many proven network paradigms such as multilayer perceptrons with back-

propagation learning, recurrent networks, competitive layers and self-organising maps. The

toolbox has a GUI for designing and managing the networks.
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The MathWorks

3 Apple Hill Drive

Natick, MA 01760-2098, USA

Phone: +1 (508) 647-7000

Fax: +1 (508) 647-7001

http://www.mathworks.com/products/neuralnet/

NeuJDesk

NeuJDesk is a general-purpose framework for Java applications. Each application is tailored

to the specific JBi bean. Data can be loaded, passed to the bean and results obtained with

minimal user knowledge. NeuJDesk supports such paradigms as multilayer perceptron,

Kohonen, KMeans, Bayesian classifier, case-based reasoning, and principal components

analysis.

Neusciences

Unit 2 Lulworth Business Centre

Nutwood Way Totton

Southampton

SO40 3WW, United Kingdom

Phone: +44 (0) 238-06-64-011

Fax: +44 (0) 238-08-73-707

e-mail: sales@neusciences.com

http://www.ncs.co.uk/Products/NeuJDesk%20introduction.htm

NeuralWorks Predict

NeuralWorks Predict is an integrated, state-of-the-art tool for creating and deploying

prediction and classification applications. Predict combines neural network technology

with genetic algorithms, statistics and fuzzy logic to find optimal or near-optimal solutions

automatically for a wide range of problems. Predict requires no prior knowledge of neural

networks. For advanced users, Predict also offers direct access to all key training and

network parameters. In Microsoft Windows environments, NeuralWorks Predict can be run

either as an add-in for Microsoft Excel to take advantage of Excel’s data-handling

capabilities, or as a command line program. In Unix and Linux environments, Neural-

Works Predict runs as a command line program.

NeuralWare

230 East Main Street, Suite 200

Carnegie, PA 15106-2700, USA

Phone: +1 (412) 278-6280

Fax: +1 (412) 278-6289

e-mail: info@neuralware.com

http://www.neuralware.com/products.jsp

NeuroCoM

The Neuro Control Manager (NeuroCoM) is a high-performance tool for developing and

testing neural networks. The NeuroCoM has a window-oriented GUI that facilitates both

neural network training and its analysis. This interface also helps to visualise the neural

network architecture, transfer functions and the learning process. The NeuroCoM can

generate a source code in C.
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TransferTech GmbH

Cyriaksring 9A

D-38118 Braunschweig, Germany

Phone: +49 (531) 890-255

Fax: +49 (531) 890-355

e-mail: info@transfertech.de

http://www.transfertech.de/wwwe/ncm/ncme_scr.htm

NeuroForecaster

NeuroForecaster (NF) is a windows-based, user-friendly and intelligent neural network

forecasting tool. It incorporates neural network and fuzzy computing. The NF can be used

for time-series forecasting (e.g. stock and currency market forecasts, GDP forecast),

classification (e.g. stock selection, bond rating, credit assignment, property valuation)

and indicator analysis. The NF can read Excel, MetaStock, CSI, Computrac and ASCII data

files directly.

NewWave Intelligent Business Systems, NIBS Inc.

e-mail: info@kDiscovery.com

http://web.singnet.com.sg/~midaz/nfga.htm

NeuroShell 2

Combines powerful neural network architectures, a user interface driven by Microsoft

Windows icons, sophisticated utilities and popular options to give users the ultimate

neural network experimental environment. It is recommended for academic users, or for

users who are concerned with classic neural network paradigms like back-propagation.

Users interested in solving real problems should consider the NeuroShell Predictor,

NeuroShell Classifier or the NeuroShell Trader.

Ward Systems Group, Inc.

Executive Park West

5 Hillcrest Drive

Frederick, MD 21703, USA

Phone: +1 (301) 662-7950

Fax: +1 (301) 663-9920

e-mail: sales@wardsystems.com

http://www.wardsystems.com/products.asp

NeuroSolutions

This software combines a modular, icon-based network-design interface with an

implementation of learning procedures, such as recurrent back-propagation and back-

propagation through time. Other features include GUI and C++ source-code generation.

There are six levels of NeuroSolutions: the Educator, the entry level intended for those who

want to learn about neural networks; the Users level, which extends the Educator with a

variety of neural models for static pattern recognition applications; and the Consultants

level that offers enhanced models for dynamic pattern recognition, time-series prediction

and process control.

NeuroDimension, Inc.

1800 N. Main Street, Suite D4

Gainesville, FL 32609, USA
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Phone: +1 (352) 377-5144

USA toll free: 1-800-634-3327

Fax: +1 (352) 377-9009

e-mail: info@nd.com

http://www.neurosolutions.com/products/ns

Partek Discover and Partek Predict

Partek Discover provides visual and numerical analyses of clusters in the data. Also useful

for mapping high-dimensional data to a lower dimension for visualisation, analysis or

modelling. Partek Predict is a tool for predictive modelling that determines an optimal set

of variables to be used. It provides several methods for variable selection, including

statistical methods, neural networks and genetic algorithms.

Partek Incorporated

4 Research Park Drive, Suite 100

St Charles, MO 63304, USA

Phone: +1 (636) 498-2329

Fax: +1 (636) 498-2331

e-mail: information@partek.com

http://www.partek.com/html/products/products.html

STATISTICA Neural Networks

STATISTICA Neural Networks is the most technologically advanced and best-performing

neural networks application on the market. It offers numerous unique advantages and will

appeal not only to neural network experts (by offering them an extraordinary selection of

network types and training algorithms), but also to new users in the field of neural

computing (via the unique Intelligent Problem Solver, a tool that can guide the user through

the procedures for creating neural networks).

StatSoft, Inc.

2300 East 14th Street

Tulsa, OK 74104, USA

Phone: +1 (918) 749-1119

Fax: +1 (918) 749-2217

e-mail: info@statsoft.com

http://www.statsoft.com/stat_nn.html

THINKS and ThinksPro

THINKS is a personal neural development environment. It can also be used as an excellent

teaching tool. With options on network architecture and processing element definition,

the experienced user can quickly experiment with novel network configurations. Thinks-

Pro is a professional neural network development environment. It offers dynamic graphing

and visualisation tools to view continually inputs, weights, states and outputs in a number

of formats, illustrating the learning process. A 30-day trial version of ThinksPro is available

as a free download.

Logical Designs Consulting, Inc.

Advanced Investment Technologies Center

5666 La Jolla Blvd, Suite 107
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La Jolla, CA 92037, USA

http://www.sigma-research.com/bookshelf/rtthinks.htm

Evolutionary computation tools

ActiveX Genetic Programming Control!

Enables the user to build his/her own ‘genetic programs’ with any OCX or ActiveX

programming language. The user just has to provide the grammar in a plain text file and

add his/her raw fitness evaluation function. A manual and a sample application are

available as free downloads.

Hanke & Hörner Software Solutions

Pouthongasse 12/26

A-1150 Vienna, Austria

Phone: +43 (1) 789-5117

Fax: +43 (1) 789-5117-11

e-mail: info@hhsoft.com

http://www.hhsoft.com/

Evolutionary Optimizer

The Evolutionary Optimizer (EVO) is a generic tool for optimising system properties

determined by numerical parameters. The system provides a graphical user-friendly inter-

face and requires no knowledge of programming.

TransferTech GmbH

Cyriaksring 9A

D-38118 Braunschweig, Germany

Phone: +49 (531) 890-255

Fax: +49 (531) 890-355

e-mail: info@transfertech.de

http://www.transfertech.de/wwwe/evo/evoe_scr.htm

Evolver

An optimisation add-in for Microsoft Excel. Evolver uses genetic algorithms to quickly

solve complex optimisation problems in finance, distribution, scheduling, resource alloca-

tion, manufacturing, budgeting, engineering, and more. Virtually any type of problem that

can be modelled in Excel can be solved by Evolver. It requires no knowledge of

programming or genetic algorithm theory and ships with a fully illustrated manual, several

examples and free, unlimited technical support.

Palisade Corporation

31 Decker Road

Newfield, NY 14867, USA

Phone: +1 (607) 277-8000

USA/Canada toll-free: 1-800-432-7475

Fax: +1 (607) 277-8001

sales@palisade.com

http://www.palisade.com/html/evolver.html
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GEATbx

The Genetic and Evolutionary Algorithm Toolbox (GEATbx) for use with MATLAB is the

most comprehensive implementation of evolutionary algorithms in MATLAB. A broad

range of operators is fully integrated into the environment, which constitutes a powerful

optimisation tool applicable to a wide range of problems.

T&R Computer-Vertrieb GmbH

Klaistower Strasse 64/65

D-14542 Glindow, Germany

Phone: +49 (3) 327-468-0189

Fax: +49 (3) 327-434-89

e-mail: t&r@geatbx.com

http://www.geatbx.com/

GeneHunter

A powerful solution for optimisation problems. GeneHunter includes an Excel add-in

which allows the user to run an optimisation problem from an Excel Release 7, Excel 97 or

Excel 2000 spreadsheet, as well as a dynamic link library of genetic algorithm functions

that may be called from programming languages such as Microsoft Visual Basic or C.

Ward Systems Group, Inc.

Executive Park West

5 Hillcrest Drive

Frederick, MD 21703, USA

Phone: +1 (301) 662-7950

Fax: +1 (301) 663-9920

e-mail: sales@wardsystems.com

http://www.wardsystems.com/products.asp

Generator

A general-purpose genetic algorithm program. It is useful for solving a wide variety of problems,

such as optimisation, curve fitting, scheduling, stock market projections, electronic circuit

design, neural network design, business productivity and management theories.

New Light Industries, Ltd

9715 W. Sunset Highway

Spokane, WA 99224, USA

Phone: +1 (509) 456-8321

Fax: +1 (509) 456-8351

http://myweb.iea.com/~nli/

Genetic Server and Genetic Library

Provides a general-purpose API for genetic algorithm design. The Genetic Server is an ActiveX

component that can be used easily to build a custom genetic application in Visual Basic.

Genetic Library is a C++ library that can be used to build custom genetic applications in C++.

NeuroDimension, Inc.

1800 N. Main Street, Suite D4

Gainesville, FL 32609, USA

Phone: +1 (352) 377-5144

USA toll free: 1-800-634-3327
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Fax: +1 (352) 377-9009

e-mail: info@nd.com

http://www.nd.com/products/genetic.htm

GenSheet

Implements genetic algorithms as fast C-coded dynamic link libraries. GenSheet supports

genetic operations for binary, integer, real and permutation representations, and includes

special commands for constrained non-linear optimisation, genetic classifiers, job-shop

scheduling and computing minimum variance portfolio. GenSheet requires Microsoft

Excel. All GenSheet commands are configured in an easy-to-use Excel menubar. GenSheet

provides interactive help and a tutorial.

Inductive Solutions, Inc.

380 Rector Place, Suite 4A

New York, NY 10280, USA

Phone: +1 (212) 945-0630

Fax: +1 (212) 945-0367

e-mail: roy@inductive.com

http://www.inductive.com/softgen.htm

Sugal

Sugal is the SUnderland Genetic ALgorithm system. The aim of Sugal is to support research

and implementation in genetic algorithms on a common software platform. It is written in

ANSI C; the source code is provided. Sugal supports multiple data types: bit strings,

integers, real numbers, symbols (from arbitrarily sized alphabets) and permutations. It

provides a platform-independent GUI, including fitness and diversity graphing facilities.

The Sugal 2.1 source code and manual are available as free downloads.

Dr Andrew Hunter

University of Durham

South Road

Durham DH1 3LE

United Kingdom

Phone: +44 (1) 91-334-1723

Fax: +44 (1) 91-334-1701

e-mail: andrew1.hunter@durham.ac.uk

http://www.dur.ac.uk/andrew1.hunter/Sugal/

XpertRule

An expert system shell with embedded genetic algorithms. The system combines the power

of genetic algorithms in evolving solutions with the power of rule-based expert systems in

solving scheduling and optimisation problems.

Attar Software UK Intellicrafters (Attar Software USA)

Newlands Road Renaissance International Corporation

Leigh WN7 4HN, England Newburyport, MA 01950, USA

Phone: 44 (0) 870-60-60-870 Phone: +1 (978) 465-5111

Fax: 44 (0) 870-60-40-156 Fax: +1 (978) 465-0666

e-mail: info@attar.co.uk e-mail: info@IntelliCrafters.com

http://www.attar.com/
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