VENTRICULAR SEPTAL DEFECTS

Dr. Meutia Maulina
Bagian Histologi
Program Studi Pendidikan Dokter
Universitas Malikussaleh

ABSTRACT

Ventricular septal defects (VSD) is a malformation of the heart, most commonly found in infants and children. Failure on interventricular septum formation that began at the end of the fourth week to the seventh week caused by VSD. The disorder can caused by multiple factors, including the interaction between predisposing factors such as hereditary and environment factors, leading to growth factor deficiency and failure of the unification of the components forming the ventricular septum. Mutations in the TBX5 gene, NKCC1 gene and GATA-4 gene was identified as the cause of the congenital heart malformations. VSD anatomy may arise in the ventricular septum, among others: VSD subartery, perimembranous, atrioventricular canal and muscular. VSD management with a minor defect is usually asymptomatic and have a good prognosis. Medical treatment is indicated for patients with a defect VSD was great and showed symptoms of congestive heart failure. Surgery is indicated for patients with large defect VSD with severe congestive heart failure and uncontrolled and the presence of recurrent respiratory tract infections. Surgical correction is indicated in moderat to large defect with left to right shunt without pulmonary vascular resistance.Keywords: Heart, Congenital heart malformation, Ventricular septal defect

A study conducted by the Cardiac Substudy of the Collaborative Study of Cerebral Palsy, Mental Retardation, and other Neurological and Sensory Disorders of Infancy and Childhood, published in 1971, found 475 cases of congenital heart malformations. Ventricular septal defect (VSD) is the most widely diagnosed disorder which reached 133 cases out of a total of 457 cases or 30%. Based on research conducted by the New England Regional Infant Cardiac Program from 1968 to 1974, found 2251 cases of congenital heart malformations and 1/6 of the total cases were VSD, while a study conducted in 1981 to 1989 by the Baltimore-Washington Infant Study, found 4390 infants with congenital heart malformations, which is 32.1% or 1411 cases are VSD (McCrindle, 2010).

Discussion

Embriology of the heart

Embryo's heart formation began in the mid-third week. At the end of the third week began to form the heart tube (Sadler, 2006). Transformation of the heart tube begins with the formation of cardiac loop. The heart tube initially uniform, than it can be distinguished into four parts sequentially from bottom to top as follows: sinus venosus that receives blood from the veins, primitive atrium, primitive ventricle, bulbus cordis which can be divided into one part of the cone and trunk out of the pericardium (Rohen and Drecoll, 2003).

The heart tube growth on day 21 and 22 (Rohen and Drecoll, 2003), and it continues to elongate and bend on day 23. The cephalic portion of the tube bends ventrally, caudally, and to the right, and the atrial (caudal) portion shifts dorsocranially and to the left. This bending, which may be due to cell shape changes, creates the cardiac loop. It is complete by day 28, so that the embryo's heart can already see the parts of primitive atrium, primitive ventricle, truncus arteriosus, bulbus cordis and interventricular sulcus (Sadler, 2006).
Embryo’s heart: A. 23 days. B. 24 days. C. 28 days (Sadler, 2006)

Interventricular septum formation started at the end of the fourth week, where both primitive ventricles begin to dilate. Medial wall of both ventricles are expanding the line of sight and gradually converge to form the interventricular septum pars muscularis. Septum formation is not perfect, thus forming a rather deep apical cleft between the two ventricles, namely interventricular foramen. In addition, a thickening of the cone on the right and the left that eventually became conical septum. In the seventh week, the conical septum adjacent to interventricular foramen coalesce and form a interventricular septum pars membranous, so that interventricular septum close properly (Sadler, 2006).

Etiology

Ventricular septal defects (VSD) is the most common lesion in many chromosomal syndromes, including group of trisomy 13, trisomy 18 and trisomy 21, but in 95% of patients with VSD, the defect is not related to chromosomal syndromes. Malformations is caused by multiple factors, including the interaction between predisposing factors such as hereditary and environmental factors (McAndiel and Gutgesell, 2008), leading to growth factors deficiency and failure of the unification of the components forming the ventricular septum (Ammash and Warnes, 2001).

Some genetic mutations identified as causes of congenital heart malformations, one of which is a mutation in the gene TBX5 (Bruneau et al., 2010). TBX5 gene is a transcription factor containing a DNA-binding motif known as the T-box that plays an important role in the cardiac septum formation (Sadler, 2006). Mutations in this gene can cause a defect in the fossa ovale, muscular VSD and abnormalities in the heart conduction system. Mutations in this gene can also cause extensive abnormalities, a case of hypoplastic left ventricle syndrome, total anomalous pulmonary venous connection and the atroventricular junction (Bruneau et al., 2010).

Mutations in the NKX2-5 gene can cause defects similar to TBX5 gene mutations, among other deficiencies atrial and ventricular septal, heart conduction abnormalities, left ventricular hypoplasia and other anomalies such as tetralogy of Fallot or Ebstein malformation. Mutations in the gene NKX2-5 gene causes a loss of activity that affects the production of proteins. This can lead to gene transcription and genes can also interact with partner proteins such as TBX5 and GATA-4 (Bruneau et al., 2010). NKX2-5 gene expression as a master gene for heart formation is influenced by a combination of gene activity of BMP and WNT proteins released by the neural tube. BMP gene expression also increased the
expression of genes that are important for FGF8 expression of cardiac specific proteins (Sadler, 2006). Mutations in the gene GATA-4 also contribute to the occurrence of VSD. Mutations in this gene are thought to cause loss of function of genes and can disrupt the interaction with TBX5 gene, so both of these genes do not have function as a transcription factor for the formation of atrial and ventricular septal (Bruneau et al., 2010).

Increased use of illegal drugs has been identified as a risk factor most likely to VSD. The incidence of VSD simple perimembranous (isolated) associated with maternal cocaine use and marijuana in men. While VSD multiple perimembranous (multiplex) associated with cocaine, metronidazole and diabetes mellitus (Wilson et al., 1998).

Classification

Ventricular septum is a three-dimensional structure consisting of five components, namely membranous septum, trabecular septum or muscular, or subartery infundibular septum, and atroventricular septal or inlet (Ammash and Warnes, 2001), so based on anatomy, VSD can occur at any site in ventricular septum, among others: VSD subartery, perimembranous, canalis atroventricularis and muscular (Lofland and Sabiston, 1994).

Ventricular septal defects (VSD) perimembranous is the most frequent of VSD (75% -80%), typically located just below the aortic valve and in the septal crest supraventricular membranous. Ventricular septal defects (VSD) subartery (supraventricular / outlet / infundibular / conoseptal) is a rare defect (5% -7%), except in Asia, the incidence reached 30%. The defect is located under the central part of the right coronary cusps. From the right ventricle, the defect is located in the part of the outlet or infundibulum of the right ventricle just below the pulmonary valve. Ventricular septal defects (VSD) canalis atroventricularis (canal / inlet) is the most rare defect occurs (8%), located below the valve leaflets atroventricularis. Defects of this type are usually large and often found in people with Down syndrome (Ammash and Warnes, 2001; Lofland and Sabiston, 1994).

Membranous and muscular VSD: A: Membranous VSD with partial obliteration of septal leaflet of the tricuspid valve (SLTV); B: Muscular VSD (Ammash and Warnes, 2001)
Management

Patients with small defects are usually asymptomatic and have a good prognosis, so it is not necessary for medication therapy or surgery. Medication therapy is indicated for patients with large defects and exhibit symptoms of congestive heart failure. Drugs used among others furosemide dose 1-3 mg / kg body weight / day divided into two or three doses. Digoxin is given to large defect's patients with congestive heart failure and increased pulmonary blood flow. Many studies report a refinement and improvement in left ventricular contractility due to digoxin use (McAndiel and Gutgesell, 2008).

Surgery is indicated for large defect's patients with severe congestive heart failure and uncontrolled, and presence of recurrent respiratory tract infections. This therapy is recommended for older patients, asymptomatic with normal pulmonary pressure when pulmonary and systemic flow ratio of less than 2:1. Defects are accompanied by left ventricular dilatation often require surgical correction (McAndiel and Gutgesell, 2008).

Surgical therapy is required when the doppler echocardiography examination showed right ventricular pressure is higher than the pressure in the left ventricle at the age of 5 to 6 months and babies have growth retardation. This is because some patients are at risk of irreversible pulmonary vascular disease. There are two options for surgical treatment for newborns. The first option for the correction of the pulmonary trunk and proceed with surgical correction at an older age. Correction of the pulmonary trunk is a palliative procedure that is safe and effective.

The second option is to close the defect (primary closure) (Benson et al., 2010).

A large defect's patients with pulmonary hypertension has a high risk of pulmonary vascular obstructive disease, so it can be corrected with surgery as soon as the pulmonary vascular disease is still reversible and not severe. Surgical therapy is not recommended in patients with normal pulmonary artery pressure with a small defect. Surgical correction is indicated in moderate to large defect with left to right shunt without pulmonary vascular resistance (Child and Friedman, 2005).

Prognosis

In patients with a small defect, normal pulmonary artery pressure without left ventricular hypertrophy, usually have a good prognosis (Benson et al., 2010), with little risk for endocarditis, aortic valve insufficiency and arrhythmia (McAndiel and Gutgesell, 2008; Schmitz and Martin, 2008). Based on research conducted by the First and Second Joint Studies on the Natural History of Congenital Heart Defect probabilities obtained 87% VSD's patients can survive up to age 20 years. Prognosis depends on the size of the defect and the presence or absence of pulmonary hypertension (Benson et al., 2010).

About 75% -89% defects may close spontaneously, most often at the age of 2 years (McAndiel and Gutgesell, 2008). Spontaneous closure is rare in moderate or large size defects. Some patients with large defects can get respiratory tract infections, recurrent congestive heart failure and pulmonary hypertension due to increased pulmonary blood flow. A small percentage of patients will get high pulmonary vascular resistance when the defect is not corrected, while others will get pulmonary stenosis as a protection against the pulmonary circulation (Behrman and Vaughan, 1992).

Summary

Ventricular septal defect (VSD) is a congenital disorder caused by the opening of the interventricular septum thus allowing the blood relationship between the left ventricle and right ventricle. Defect lists different types of heart malformations are most commonly found...
in infants and children. VSD countsess events in
approximately 30-40% of all congenital heart
disease at birth, the incidence is higher in preterm
infants compared with infants mature and more
predominant in women than in men.

Ventricular septal defect (VSD) caused by
multifactors: the interaction between predisposing
factors such as hereditary and environmental factors.
Some genetic mutation identified as the cause of this
disorder, which is a mutation in the gene TBX5,
MKD2-5 and GATA-4 that acts as a master gene and
transcription factor for septum formation of the heart.
Diabetes mellitus, the use of drugs such as cocaine,
marijuana and metronidazole is also associated
with the incidence of VSD.

About 75% -89% defects may close spontaneously,
most often at the age of 2 years. Medical treatment was
given for patients with large defects and accompanied by
congestive heart failure, while surgical therapy is
indicated for a large defect's patients with severe and
uncontrolled congestive heart failure, recurrent
respiratory infections and growth retardation. Surgical
therapy performed on VSD before the onset of
pulmonary hypertension. The severity of pulmonary
hypertension that occurs determines prognosis of VSD.
Patients with VSD have a high risk for endocarditis, so
need prophylactic antibiotics for selective procedures.

References
Benson LN, Yoo SJ, Habshan FA and Anderson RH,
Cardiology. 3rd Ed. Philadelphia: Churchill
Livingstone Elsevier. pp. 591-623
of Congenital Cardiac Disease. In: Paediatric
Cardiology. 3rd Ed. Philadelphia: Churchill
Livingstone Elsevier. pp. 167-170
Child JS and Friedman WF, 2005. Congenital Heart
Disease in the Adult. In: Harrison’s Principles of
Companies. pp. 1385-1386
Lofland GK and Sabiston DC, 1994. Ventricular Septal
Defects. In: Surgical Textbook. Translated by
Andrianto P. Jakarta: EGC. pp. 788
McCrindle BW, 2010. Prevalence of Congenital Cardiac
Disease. In: Paediatric Cardiology. 3rd Ed.
pp. 154-155
McAndiel NL and Gutgesell HP, 2008. Ventricular Septal
Defects. In: Moss and Adams: Heart Disease in
Infants, Children and Adolescents, Including the
Fetus and Young Adult. 7th Ed. Vol. 1. Philadelphia:
Lippincott Williams and Wilkins. pp. 667-680
Rohen JW and Drecoll EL, 2003. Functional Embryology:
Development of Human Organ Function System. 2nd
Ed. Translated by Widjaja H. Jakarta: EGC. pp. 71-79
10th Ed. Translated by Pendit BU. Jakarta: EGC.
pp. 187-210
Schmitz PG and Martin KJ, 2008. Ventricular Septal
Defects. In: Internal Medicine: Just the Facts. New
Wilson PD, Loffredo CA, Correa VA and Ferencz C,