

PRODUCTION OF

CONDENSER

(Mini Project Assignment during Ph.D at Universiti Putra Malaysia 2008)

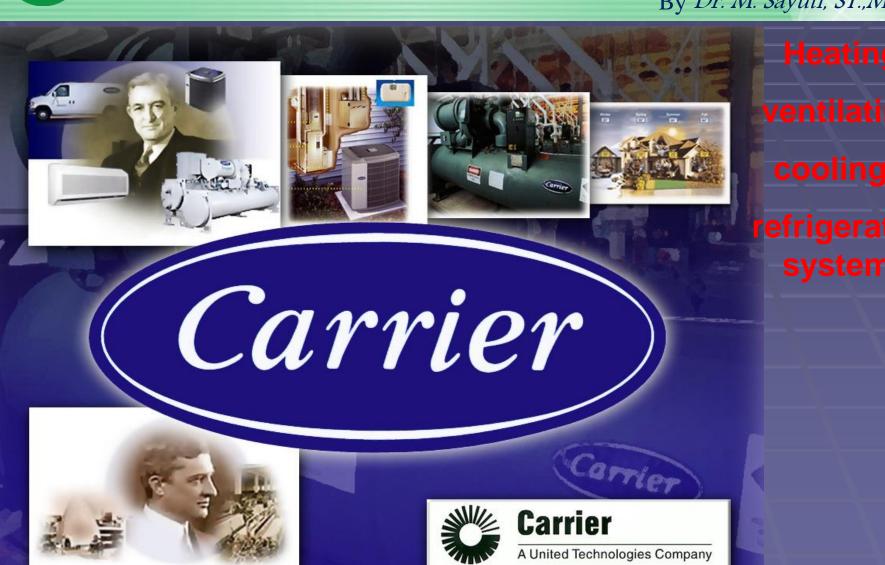
Dr. M. Sayuti, ST., M.Sc

JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK – UNIVERSITAS MALIKUSSALEH 2016

Contents

- Objective
- Introduction
- Manufacturing Process and Machine
 - Fin Press
 - Hair Pin Bending
 - Expending
- Advantages of Advance Manufacturing
- Conclusion

OBJECTIVES


 To understand the production of condenser

 To identify the advance manufacturing system in the production of condenser

INTRODUCTION

The Factory

Carrier in Malaysia

Established in 1959

Bangi operation since 1985

ISO 9001 Certified since 1993

ISO 14000 Certified since 1999

ISO 9001:2000 Certified since 2003

FACTORY FACILITY

Assembly • 6LC

· AHU/Chiller/WCPU

Coil Assembly

E-Coating

• Condenser Coil

Powder PaintingPower-coat line

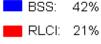
TYPES OF PRODUCTS

		Ducted FCU			Cassette	UC/Console	Ducted CW FCU/AHU			
	-/	42ZX	40LX/LZA	40RQ	40KMC	42XQ/42XQA	42ZM	40LM	42D/C	39G
		(10k-36K)	(40-200K)	(240K-360K)	(13K - 50K)	(18K - 60K)	(300-1200)	(1200-3400)	(200-2000)	330
					7					
			100	Carrier			THE RESERVE			3
								-		
CONDENSING UNIT								_		\
CONDENSING UNIT										
38VTA	AUZ.									
(30K - 60K)		—			Y	~				
38LZA										
(80K-200K)				✓		-				
(0011 20011)	To the second									
AIR-COOLED RECIP	CHILLER									
										\
30GTN (50TR - 20	OTR)		O.	100	1 1		✓	1	✓	1
	,									\
WATER COOLED PA	ACKAGE	-	7		_					
50BPB/BP, 50PVI			Carrier							
900K)	B/1 V (0010									
00011)				50BPB/PVB ((Scroll)					
50PH (40K - 60K)	H (40K - 60K)		50BP/PV (Recip)		50PH		Н			
OTHERS		BUS		OEM Coil		E-Coat Compressor				
		OEM Coil			E-Coat Comp	DIESSUI			\\	
		333								
1/										

NO OF EMPLOYEES

- The main production floor in CISB factory is operating 12 hours
- Some of the highly demand product such as condenser and compressor production is operating 24 hours in a day.
- Currently there are more than 600 workers working in the factory per day.

VOLUME PRODUCE/YEAR


CARRIER INTERNATIONAL SDN BHD 2008

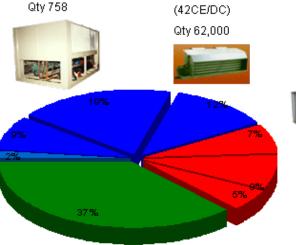
Small Chillers

(Recip 30GT)

Product Portfolio 2008

(\$ millions @ 2007 pfx)

Ref: 37%


AHU-39G

Pkg AHU Qty 3,813

(Compressor/Coil) Qty 173,000

\$116M

Eancoil Unit

Package (CDU/Indoor) Qty 7,559

Duct free Split (42XQ/40KMC) Qty 28,649

Others

Manufacturing Process and Machine

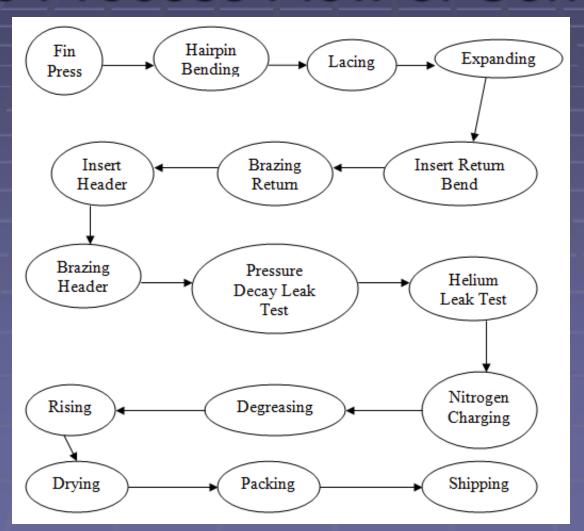
TYPES OF MANUFACTURING

CHARACTERISTIC MANUFACTURING SYSTEM

- The Condenser line can be known as mass production
- ~ Around 400 pieces of condenser produce in a day
- ~ More than 10,000 units of condenser product produces annually
- ~ Mass production can be known as a flow production, repetitive flow production, series production, or serial production is the production of large amounts of standardized products on production lines.

Factory Layout

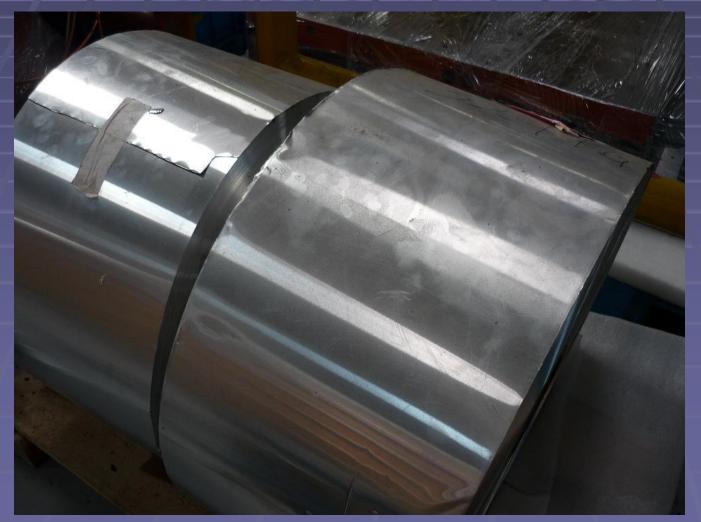
Condenser



Condenser

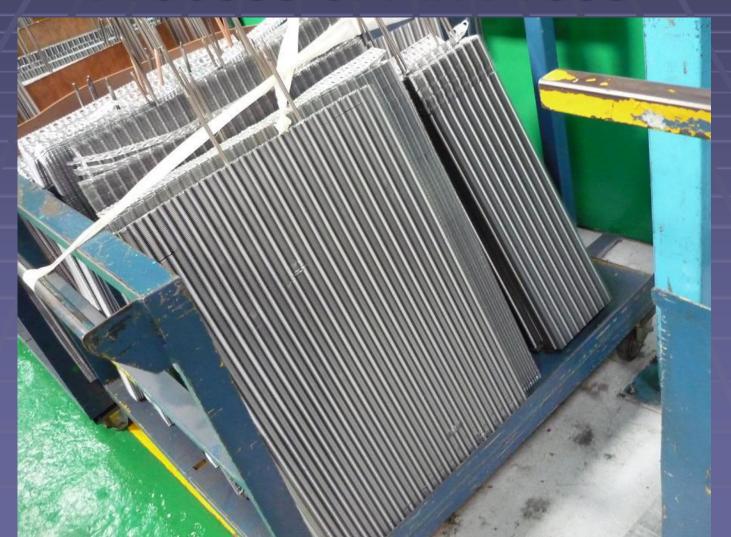
- Condenser (heat transfer), a device or unit used to condense vapour into liquid.
- For example a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air.
- Condensers are used in air conditioning, industrial chemical processes such as distillation, steam power plants and other heat-exchange systems.

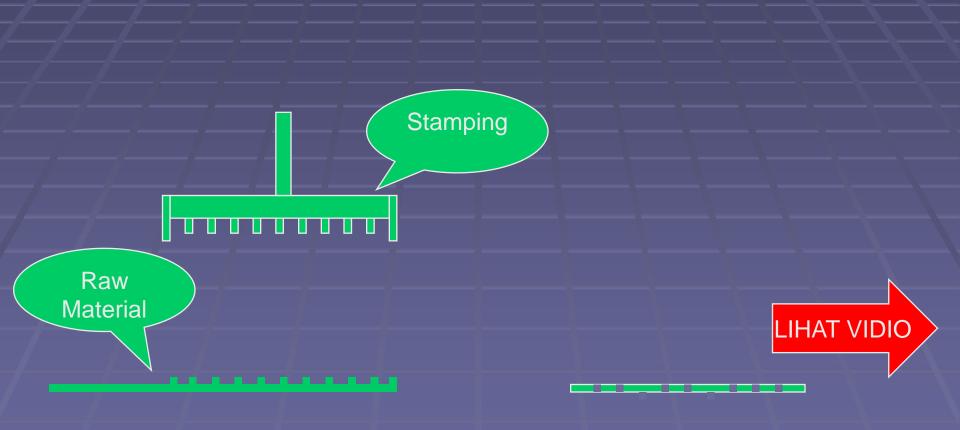
The Process Flow of Condenser

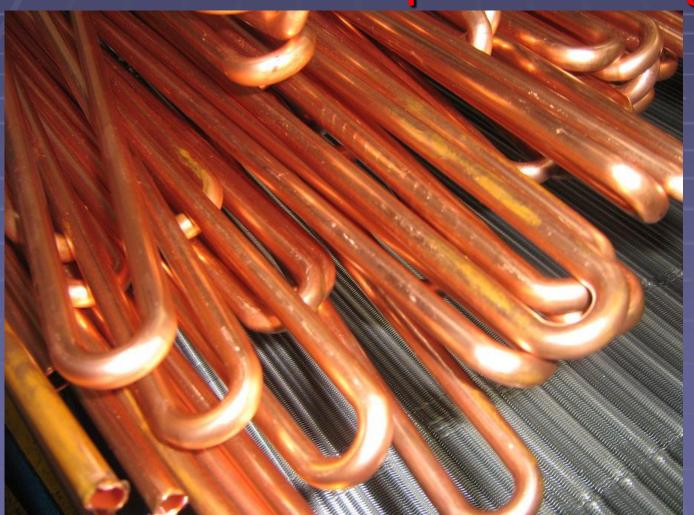


- Is a process that transform the metal sheet to the condenser fin
- Process through a highly accurate and efficient machine using pressing method.

Process of Fin Press


M

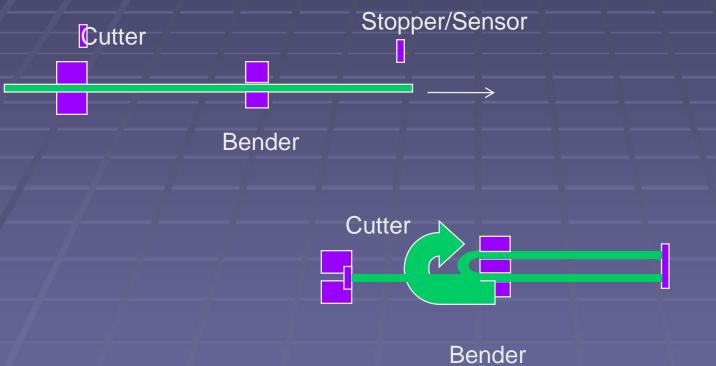




- Is a process that transform the copper roll to the U shape Hairpin Bending
- Process through a highly accurate and efficient machine using bending method.

Process of Hairpin Bending

MACHINE

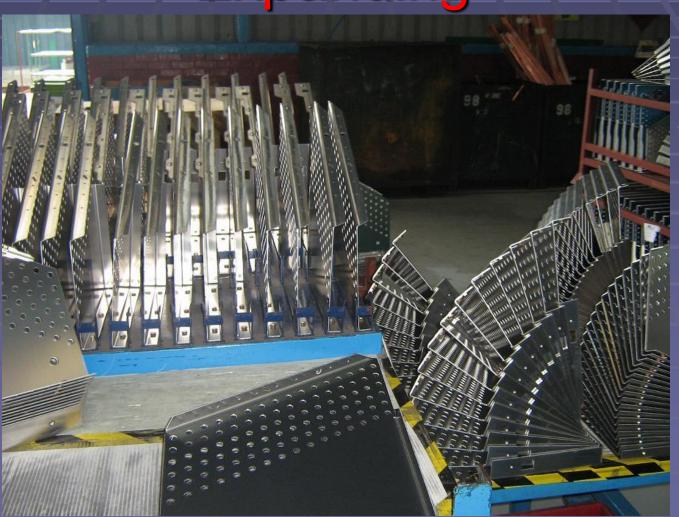


Process of Hairpin Bending

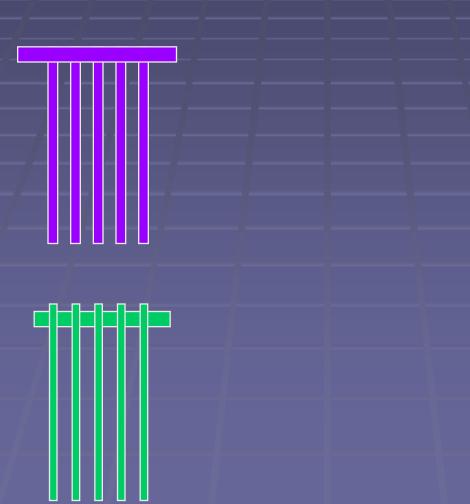
Lacing

- Process of inserting the U shape hairpin bending through the condenser fin
- Powered by man power process

Lacing


Lacing

- Process of expanding the end edge mouth of the U shape hairpin bending tube to hold the metal plate
- Process through a highly accurate and efficient machine using expanding method.



Insert Return Bend

- Process of inserting the U shape hairpin bending
- Powered by man power process

Insert Return Bend

Insert Return Bend

Brazing Return Bend

Brazing Return Bend

Brazing the Header

Brazing the Header

Brazing the Header

Pressure Decay Leak Test

Helium Leak Test

Helium Leak Test

Degreasing

Degreasing

Rinsing

Drying

Packing

Packing

Packing

Advantages of Advance Manufacturing

Advantages of Advance Manufacturing

- Increase in production Rate
- Lower manufacturing lead times
- Greater flexibility in production scheduling
- Increase in consistency and accuracy of process plans
- *Reduction in reliance on skills of planning engineer

Conclusion

- Advance machining system in Carrier keep them in a high production rate.
- The advance machining system is actually combination of few basic concept with the integration of the automation.
- Combination of basic concept can output a new machining concept which improve the overall process.