ISSN: 2541-4151 International Conference on Engineering and Science for Research and Development (ICESReD) www.icersed.unsyiah.ac.id # **PROCEEDING** # Theme "Enhancing the quality of science and engineering through sustainable research and development to face ASEAN Economic Community challenges." BANDA ACEH - INDONESIA October 25-26, 2016 In association with Sponsored by: ## **Conference in Brief** Faculty of Engineering Syiah Kuala University was founded in 1963. The existence Engineering Faculty in Syiah Kuala University was driven by the needs of skilled manpower in the field of engineering to fill the human resource development in the province of Aceh. Then, with the discovery of natural gas which is abundant in the area of North Aceh district. And now the Faculty of Engineering has been managing 11 study programs consist of Civil Engineering, Mechanical Engineering, Chemical Engineering, Electrical Engineering, Architecture, Geophysics, Geology, Industrial Engineering, Mining Engineering, Urban and Regional Planning, and Computer Engineering. Engineering Faculty of Syiah Kuala University has vision to be the leading education and research institution that is capable to compete in national and global levels. As its founding background and vision, the FT Unsyiah is required to play an important role in ASEAN Economic Community Trade Area, particularly to produce qualified graduates who highly honour moral and ethical values. The International Conference on Engineering and Science for Research and Development (ICESReD) is a part of various efforts to achieve this goal. This conference will be carried out biannually by Faculty of Engineering Syiah Kuala University. This conference is organized by: Partnering with: Sponsored by: Supported by: # The Conference Committee #### **Advisory Committees** Prof. Dr. Ir. Samsul Rizal, M.Eng. Rector of Syiah Kuala University Dr. Hizir Vice Rector for Academic Affair, Syiah Kuala University Dr. Ir. Mirza Irwansyah, MBA., MLA. Dean Faculty of Engineering, Syiah Kuala University Dr. Ir. Rizal Munadi, M.M., M.T. Vice Dean for Academic Affair Faculty of Engineering, Syiah Kuala University #### **Organizing Committees** Dr. Edi Munawar, S.T., M.Eng. Chairman of Committe, Syiah Kuala University Dr. Ashfa, S.T., M.T. Secretary of Committe, Syiah Kuala University #### Scientific Committee Dr. Cut Dewi, ST, MT, M.Sc Syiah Kuala University, Indonesia Dr. Fitri Arnia, ST., M. Eng Syiah Kuala University, Indonesia Prof. H. J. P. Timmermans TU Eindhoven, the Netherland Prof. Hiromi Homma Toyohashi University of Technology, Japan Dr. Izziah, M.Sc Syiah Kuala University, Indonesia Assoc. Prof. Johann Fellner Vienna University of Technology, Austria Prof. Mahamod Ismail The National University of Malaysia, Malaysia Dr. Nasrul Arahman, ST. MT Syiah Kuala University, Indonesia Dr. Renny Anggraini, ST., M.Eng Syiah Kuala University - Indonesia Dr. Syifaul Huzni, ST., M.Sc Syiah Kuala University, Indonesia Dr. Syifaul Huzni, ST., M. Eng Syiah Kuala University, Indonesia #### **Editor** Dr. Nasrul Arahman, ST., MT # **Table of Content** | The Conference Committee Welcome Speech from the Dean Message from the Chairman | iii | |---|-------| | | | | Message from the Chairman. | iv | | | | | Table of Content | v | | Keynote Speaker | | | The Contribution of (European) Universities to Research and Innovation | | | Johan Fellner | 1 | | 2. 5G Ultra-dense Femtocell Networks Access: Issues and Challenges | | | Mahamod Ismail | 3 | | | | | Effect of Secondary Chamber on Gas Yields by Pre-vacuum Chamber Pyrolysis of Ru
Wood - From Science to Engineering and from Engineering to Technology | OUCI | | Hiroomi Homma and Hiroki Homma | 5 | | Hiroomi Homma and Finoki Homma | | | Civil and Geophysics Engineering | | | The Tensile Behaviour of Concrete with Natural Fiber from Sugar Palm Tree | | | Ade Sri Wahyuni and Elhusna | 15 | | 2. The Compressive Strength and The Absorbtion of The Clay Brick With The Rice Husk | Ash | | and The Palm Oil Fuel Ash | | | Elhusna and Ade Sri Wahyuni | 19 | | 3. Determination of Micro Watershed Model Based on Ecohydrology for the Management | nt at | | Krueng Peusangan Watershed | | | Ichwana, Ashfa Achmad and Susi Chairani | 25 | | 4. Microstructures Behaviour of High Strength Concrete with Variation of Additives | | | Andi Yusra and Inseun Yuri Salena | 31 | | 5. Economic Feasibility of Krueng Mane-Buket Rata Road Development Project | on | | Agricultural and Livestock Farming Production | | | Renni Anggraini, Sofyan M. Saleh and Amirullah | 37 | | 6. Reliability Evaluation of Structural Columns that Affected by Tsunami in Mina Building | | | Dormitory Banda Aceh | | | Samsunan and Muhammad Ikhsan | 45 | | 7. Characterization of Hot Spring Outflow in Geothermal Area of Seulawah Agam's | | | Seu'um, Aceh-Indonesia Using Induced Polarization Method | 10 | | Marwan, Zul Fadhli, Asrillah, Muhammad Syukri, Rosli Saad and Renaldy | 51 | | 8. Water Profile Estimation on River Flood Discharge by Using Hec-Ras (Case Study: | | | | All | | Manjuto River, Bengkulu, Indonesia) Gusta Gunawan, Besperi Alex Surapati and Lidia Agustin | 57 | | Gusta Gunawan, Besperi Alex Surapan and Lidia Agustin | 3/ | | Planning and Architecture Engineering | | | Alternatives for Settlement Area Management of Meureudu River watersheds towards F | lood | | Mitigation (Case Study of Meureudu City Center, Pidie Jaya-Aceh) | | | Mirza Irwansyah, Cut Nursaniah and Laila Qadri | (63 | | Spatial Variation of Water Supply Provision in Bandung Metropolitan Area | | | Sri Maryati and An Nisaa' Siti Humaira | | | 3. Factor Affecting the Willingness of Community in Application of Green Infrastruc | ture | | Component | | | Sri Maryati, An Nisaa Siti Humaira and Muhfidlatul Qira'ati | 79 | | 4. Re-Envisioning Lost Built Cultural Heritage: POST-Tsunami Aceh | | | Julie Nichols, Darren Fong and Susan Avey | 83 | | 5. "Kota Madani": Islamism of Urban Planning in Banda Aceh | | | Cut Dewi | 95 | | 6. The Masjid Pedestrian Network of Madani City: Exploring Religious Facilities Ext | | | Space for Pedestrian Friendly Street Network in Banda Aceh | | | Sylvia Agustina, Chyntia Aryani and Saiful Mahdi | 101 | | 7. | The Needs of Public Green Structure in the City of Banda Aceh | | |------|--|-------| | | Mirza Fuady | 109 | | 8. | Modeling of Ecologic Urban Green Structure in System Dynamics | | | | Mirza Fuady | 117 | | 9. | The Twentieth Century Architecture of Banda Aceh: Researching Identity and Strengthening | | | | Colonial Authority | | | | Izziah | 125 | | 10. | Effectiveness of Tsunami Evacuation Building as a Tsunami Disaster Mitigation Effort in | | | | Banda Aceh | | | | Muhammad Haiqal, Arif Kusumawanto and Soeleman Saragih | 131 | | 11. | The Role of Bus Rapid Transit, Trans Mebidang in overcoming the Congestion in Medan | | | | Kaspan Eka Putra and Zainuddin | 131 | | | | | | Mer | hanical and Industrial Engineering | | | 1. | Cooling Rate Investigation and The Influence of Pouring Temperature on Hardness | | | • | Properties of As-Cast Aluminium Alloys | | | | Hasan Akhyar and Ahmad Farhan | 143 | | 2. | Performance Investigation and Development of Solar Dryer Tunnel Type Apparatus of | | | 4. | Cocoa | | | | Darwin Harun, Hasan Akhyar and Razali Thaib | 149 | | 3. | Finite Element Simulation of Micromechanical Bending Behavior of Typha Fiber Reinforced | A-1. | | ٥. | Composite | | | | Ikramullah, Samsul Rizal, Syifaul Huzni and Sulaiman Thalib | 155 | | 4 | The Power Consumption of Paddlewheel Aerator with Moveable Blades | 1.7. | | 4. | Samsul Bahri, Radite Praeko Agus Setiawan, Wawan Hermawan and Muhammad Zairin | | | | | 161 | | | Junior | 101 | | 5. | | | | | Employing Structural Equation Modelling | 161 | | _ | Sarika Zuhri, Ilyas, Suhendrianto, and Prima Denny Sentia | 10 | | 6. | Productivity Improvement SMEs Makers Aceh Typical Traditional Cake (Karah Cake) | | | | Mechanization Tool Makers on Cake | 177 | | _ | Fitriadi and Pribadyo | 177 | | 7. | Controlling of the Exhaust Emissions of the Natural Gas Vehicles using Palladium Deposited | | | | on a Mixture of TiO ₂ and ZSM-5 | 10/ | | | Adi Setiawan | 185 | | 8. | Actions and Supports Needed for University during Recovery & Reconstruction of Mega- | | | | Disaster, such as 2004 Indian Ocean Tsunami | | | | Muhammad Dirhamsyah and Yasuo Tanaka | 191 | | 9. | The Effect of Length Variation of Pegs on the Flexural Strength of Laminated Bamboo Beam | | | | (Dendrocalamus Asper) | | | | Zulmahdi Darwis, Soelarso, and Ipick Setiawan | 199 | | 10.) | Surface Roughness Analysis in Machining of TiC Reinforced Aluminum LM6 | • • • | | | Muhammad Yusuf | 205 | | 11. | Effect of Cutting Conditions to the Thrust Force in Drilling of Coconut Composite Panel | | | | Mohd Iqbal, Akram and Danar Wahyu Fiqi A.P. | 21 | | | | | | Che | mical and Environmental Engineering | | | 1. | Refuse Derived Fuels in the Cement Industry-Potentials in Indonesia to Curb Greenhouse | | | | Gas Emissions | | | | Therese Schwarzböck, Edi Munawar, Jakob Lederer and Johann Fellner | 219 | | 2. | Characterization and utilization study of byproduct water from oil and gas of Jabung block | | | | using Principle Component Analysis | | | | Gustawan, A., Damris, M. and Asyhar, R. | 229 | | 3. | Characterization of Activated Carbon Prepared from Oil Palm Empty Fruit Bunch by | | | | Chemical Activation using Sulphuric Acid (H ₂ SO ₄) | | | | Puji Wahyuningsih, Nadya Yusri and Hamdani | 239 | | 4. | Purification of Waste Cooking Oil as Biodiesel Feedstock UsingCeramic Filter | | | | Duzi Anggraini Riman Sinahutar and Subriver Nasir | 244 | # Surface Roughness Analysis in Machining of TiC Reinforced Aluminum LM6 #### Muhammad Yusuf Department of Mechanical Engineering, Faculty of Engineering, University of Malikussaleh, Indonesia Corresponding Author: muhd.yusuf@unimal.ac.id #### Abstract With increasing quantities of applications of Metal Matrix Composites (MMCs), the machinability of these materials has become important for investigation. This paper presents an investigation of surface roughness dry machining of aluminum LM6-TiC composite using uncoated carbide tool. The experiments carried out consisted of different cutting models based on combination of cutting speed, feed rate and depth of cut as the parameters of cutting process. The cutting models designed based on the Design of Experiment Response Surface Methodology. The objective of this research is finding the optimum cutting parameters based on workpiece surface roughness, the minimum values of Ra are the good machinability of MMCs. The results indicated that the minimum value of surface roughness was found at the cutting parameters ($v = 250 \text{ m min}^{-1}$, $f = 0.05 \text{ mm rev}^{-1}$, ap = 1 mm). Keywords: Aluminum composites, cutting parameter, surface roughness. #### Introduction Now a day's metal matrix composites (MMCs) are the new class of materials and rapidly replacing conventional materials in various engineering applications, especially in the automobile and aerospace industries. Aluminum alloy is light metal commonly used in the MMCs as matrix phase reinforced with particles reinforcement such as SiC, TiC, SiO₂ and Al₂O₃. Aluminum MMCs have low density, excellent wear resistance, high specific strength and high specific modulus over conventional materials. The machining process of these materials is more difficult than the conventional materials, due to the addition of reinforcing materials which are harder and stiffer than the matrix (Bhushan, et al., 2010; Seeman, et al., 2011; Yusuf, et al., 2014). In machining operations, the surface finish requirement restricts the range of cutting parameters and tool geometries which can be used, especially finishing operations. Surface finish is a factor of great importance in the evaluation of machining accuracy. A lot of factors affect the surface condition of machined part. However, machining parameters such as cutting speed, feed and depth of cut have a significant influence on surface quality. The machinabilty of aluminum matrix composites reinforced particulate has investigated by several researchers. Bahera was investigated manchinability of LM6 reinforced with 5 and 10 wt.% SiC particles (Bahera, et al., 2011). The effect of SiCp reinforcement on the machinability and the effects of machining parameters such as cutting speed and depth of cut at constant feed rate on surface roughness and the cutting forces has been investigated. The experiment was conducted on a conventional lathe machine using HSS cutting tool without use of coolant. The results show that higher weight percentage of SiC reinforcement produced a higher surface roughness. At constant feed rate and different cutting speed, the cutting forces are increases on increasing the depth of cut. The surface roughness increases on increasing the depth of cut and decreases on increasing the cutting speed at constant feed rate. Surface roughness and wear of the cutting tool during the turning of LM6 aluminum with 2 wt.% TiC composite using uncoated carbide tool in dry cutting condition was investigated (Yusuf *et al.*, 2014). The results indicated that the minimum values of surface roughness was found at high cutting speed of 250 m min⁻¹ with various feed rate within range of 0.05 to 0.2 mm rev⁻¹, and depth of cut within range of 0.5 to 1.5 mm. Turning operation at high cutting speed of 250 m min⁻¹ produced faster tool wear as compared to low cutting speed of 175 m min-1 and 100 m min⁻¹. This study is concerned with the effect of cutting parameters (cutting speed, feed and depth of cut) on the surface roughness in turning process aluminum LM6 reinforced with 10 wt% of TiC (Titanium Carbide) particles composite. The objective of this research is to obtaining the optimum cutting parameters to get a better surface quality #### **Experimental Setup** #### Material Metal matrix composite of LM6 aluminum alloy (BS 1490–1988 LM6) type was used as the matrix material with 10 % wt TiC (Titanium Carbide) particles as reinforcement was prepared by liquid metal stir casting technique. The chemical compositions of LM6 aluminum in percentage of mass have been included in Table 1. The small ingot of LM6 is melted in crucible using an electrical resistance furnace. The TiC particles were preheated at the temperature of 600°C before mixed with the LM6 liquid to make their surface oxidized. The melt was mechanically stirred by using a hard steel impeller and then the preheated titanium carbide particles added with the stirred LM6 liquid. The processing of the composite was carried out at the temperature of 720°C with the stirring speed of 200–250 rpm for 20 minutes (Figure 1). The melt composite was poured into the round bar sand mould with the dimension of diameter of 50 mm and length of 300 mm. The vibration technique was used during solidification process by putting sand mould on the vibration table as shown in Figure 2. This technique has a remarkable effect on the castings properties. Figure 3 shows the round bar casting products of LM6 aluminum reinforced with 10 wt.% TiC particles. #### Machine and cutting insert The machining were carried out under dry cutting condition on CNC lathe machine (Mazak SQT 200MY). The round bar casting product of aluminum LM6 with 10 % wt TiC composite used as the workpiece material in machining trials. The cutting tool insert uncoated carbide VCGT 160402 FL K10 with tool holder SVJCR was used in the experiment. The cutting parameters which are cutting speed (v), feed (f) and depth of cut (a_p) were selected as the control parameters of the machining. The cutting parameters and levels each parameter were set as shown in Table 2. The combination of cutting parameters as the cutting condition models designed based on the Design of Experiments (DOE) Response Surface Methodology represent Box–Behnken design (Myers and Montgomery, 2002). The surface roughness was measured using portable MarSurf PS1 to measure of average surface roughness (Ra). Table 1. Chemical composition (wt. %) of LM6 aluminum | Si | Fe | Cu | Mn | Mg | Ni | Zu | Sn | Ti | Other | Al | |-------|-----|-----|-----|-----|-----|-----|------|-----|-------|------| | 10-13 | 0.6 | 0.1 | 0.5 | 0.1 | 0.1 | 0.1 | 0.05 | 0.2 | 0.15 | Rest | Table 2. The cutting parameters process and their levels | Factor | 17 | Levels | | | | | |--------------------------------|----------------------|------------|-------|------|--|--| | | Unit | Low Medium | | High | | | | Cutting speed (v) | m min ⁻¹ | 100 | 175 | 250 | | | | Feed (f) | mm rev ⁻¹ | 0.05 | 0.125 | 0.2 | | | | Depth of cut (a _p) | mm | 0.5 | 1.0 | 1.5 | | | Figure 1. Stirring process of liquid LM6 with TiC particles Figure 2. Vibration technique for solidification process Figure 3. The round bar casting products of LM6 aluminum reinforced with 10 wt.% TiC particles. #### **Results and Discussion** Surface roughness is a factor of great importance in the evaluation of the machinability of metal matrix composites. Surface roughness is the final surface quality formed after the machining on a workpiece. Many factors affect the surface roughness of a machined part such as properties and constituents of workpiece material, tool geometry, and machine condition. However, cutting parameters such as cutting speed, feed rate and depth of cut have a significant influence on surface roughness. In the present study, the value of surface roughness of cast TiC reinforced aluminium LM6 has been investigated at selected cutting speed, feed and depth of cut as the cutting parameters. Based on DOE response surface methodology, with use of Minitab software was found fifteen the cutting condition models represent Box-Behnken design to run the experiment. The cutting condition models and the experimental results as given in Table 3. The effect of different cutting parameters on machining of LM6 composites can be studied by using response graph and response table. The effect of cutting parameters on surfaces roughness is shown in Figure 3. It is clearly observed that in figures, cutting parameters has significant effect on surface roughness. Figure 3 shows that surface roughness is low at high cutting speed. This was due to the velocity of chips flow that is faster at high cutting speed than low cutting speed. This causes a shorter time for the contact of chips with the newly formed surface of the workpiece (Boothroyd, 2006). The surface roughness increase with increased feed parameter. Actually this case is commonly expected, due to agreeable with a popular model to estimate the surface roughness with a tool having nonzero nose radius (Boothroyd, 2006), is: $$Ra = \frac{f^2}{32.r} (1)$$ where Ra is the average surface roughness, f is the feed parameter, and r is the cutting tool nose radius. The surface roughness increased with increased dept of cut. The minimum values of surface roughness are the good quality of workpiece surface. From Tabel 3, machining of LM6 aluminum reinforced with 10 wt.% TiC composite was found at the cutting parameters ($v = 250 \text{ m min}^{-1}$, $f = 0.05 \text{ mm rev}^{-1}$, ap = 1 mm). | Table 2 Ti | ne cutting con | dition m | adala and | tha | avnacimantal | raculte | |-------------|----------------|----------|-----------|------|--------------|---------| | Table 3. 11 | ie cilinng con | amon m | odels and | me a | experimental | ICSUILS | | Cutting | 2.3 | | | | | |----------------|------------------------|---------------------------|------------------------|----------------|--| | Cutting models | (m min ⁻¹) | f (mm rev ⁻¹) | а _р
(mm) | <i>Ra</i> (μm) | | | 1 | 100 | 0.05 | 1 | 7.014 | | | 2 | 250 | 0.05 | 1 | 3.022 | | | 3 | 100 | 0.2 | 1 | 7.379 | | | 4 | 250 | 0.2 | 1 | 6.208 | | | 5 | 100 | 0.125 | 0.5 | 6.344 | | | 6 | 250 | 0.125 | 0.5 | 3.381 | | | 7 | 100 | 0.125 | 1.5 | 9.405 | | | 8 | 250 | 0.125 | 1.5 | 4.156 | | | 9 | 175 | 0.05 | 0.5 | 3.390 | | | 10 | 175 | 0.2 | 0.5 | 7.614 | | | 11 | 175 | 0.05 | 1.5 | 4.137 | | | 12 | 175 | 0.2 | 1.5 | 7.851 | | | 13 | 175 | 0.125 | 1 | 5.099 | | | 14 | 175 | 0.125 | 1 | 4.937 | | | 15 | 175 | 0.125 | 1 | 5.018 | | Figure 3. Effect plot for surface roughness ## Conclusions In this study, effect of parameters cutting speed, feed, and depth of cut on surface roughness during machining of LM6 aluminum with 10 wt.% TiC composite using uncoated carbide tool have been analyzed. Based on the results, it was found that cutting parameters has significant effect on surface roughness. The minimum value of Ra in the workpiece was found at the cutting parameters (v = 250 m min⁻¹, f = 0.05 mm rev⁻¹, ap = 1 mm). ## Acknowledgements The author thank Mr. Tajul Ariffin, Mr. Ahmad Shaifudin, Mr. Mohd Saiful Azuar and Mr. Muhammad Wildan Ilyas from the Laboratory of Mechanical and Manufacturing Engineering, University Putra Malaysia for their assistances. #### References Behera, R., Das, S., Chatterjee, D. and Sutradhar G. (2011). Forgeability and Machinability of Stir Cast Aluminum Alloy Metal Matrix Composites. *Jour. of Minerals & Materials Characterization & Eng.* 10: 923–939. - Boothroyd, G. and Knight, W.A. (2006). Fundamentals of Machining and Machine Tools, third Ed, CRC Press, Taylor & Francis Group. - Bhushan, R.K., Kumar, S. and Das, S. (2010). Effect of Machining Parameters on Surface Roughness and Tool Wear for 7075 Al Alloy SiC Composite. *Int J Adv Manuf Technol.* 50: 459–469. - Muthukrishnan, N. and Davim, J. P. (2011). An Investigation of The Effect of Workpiece Reinforcing Percentage on The Machinability of Al-SiC Metal Matrix Composites. *Journal of Mechanical Engineering Research*. 3(1):15-24. - Myers, R. H. and Montgomery, D.C. (2002). Response Surface Methodology, 2nd edition, John Wiley & Sons. - Seeman, M., Ganesan, G., Karthikeyan, R. and Velayudham, A. (2010). Study on Tool Wear And Surface Roughness In Machining of Particulate Aluminum Metal Matrix Composite-Response Surface Methodology Approach. Int J Adv Manuf Technol. 48: 613-624. - Yusuf, M., Ariffin, M. K. A., Ismail, N. and Sulaiman, S. (2014). Effect of Machining Process on Surface Microhardness of Titanium Carbide Reinforced Aluminium LM6 Composite. Applied Mechanics and Materials. 564:495–500. - Yusuf, M., Ariffin, M. K. A., Ismail, N. and Sulaiman, S. (2014). Experimental Investigation on Surface Roughness and Tool Wear in Dry Machining of TiC Reinforced Aluminium LM6 Composite. *Materials Science Forum*. 773-774:339-347.