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Abstract

A simple first-order shear deformation theory is
presented for vibro-acoustic analysis of sound radiating
plate by reducing one unknown displacement function.
The proposed method is formulated based on the
Rayleigh-Ritz method for natural frequency and mode
shape analysis and the first Rayleigh integral for sound
pressure level (SPL) curve prediction. The numerical
solution of SPL curve prediction obtained using this
method is compared with that obtained using the other
existing theory. The comparison study shows that the
simple method can produce results close to those
produced by the existing theory. The applications of the
proposed method have been illustrated by determining
the SPL curves of plates with different thicknesses.

Keywords: Vibro-acoustic, simple FSDT, Rayleigh-Ritz
method, sound radiation.

1. Introduction

Vibro-acoustic is one of structure which widely
used in different industries such as aircraft, automobile,
medical, and sound system industries. Especially for
audio industry, the most prominent effort is to fabricate
the speaker that able to produce good sound quality and
also simple assembly.

Many researchers have been developing of
methods to investigate and analyze structure that yield
optimal design. Using orthotropic material such as balsa
wood is one solution since this material has low density
property and good stiffness [1-5]. The optimal design
obtained is not regardless of effectiveness the analysis
method chosen. Classical Plate Theory (CPT) is common
approach where it ignore the effect of shear deformation
and this method only suitable for thin plate structure [6-
8]. First-Order Shear Deformation Theory (FSDT) is
another method introduced by Reissner [9] and Mindlin
[10] and adopted by Kam [11-12]. A simple FSDT have
been developed by Thai [13-14] for bending and
vibration analysis of laminate plate.

In this paper, the simple approach is adopted
together with Rayleigh-Ritz method and the first
Rayleigh integral to analyze vibro-acoustic behaviors and
construct SPL curves on single layer orthotropic balsa
wood material. Effectiveness of this approach will be
compared with previous result [15] using normal FSDT.

2. Plate vibration analysis

The orthotropic  sound radiation  plate
geometrically has size a (length) x b (width) x 7,
(thickness) with @ < b. It has boundary condition
elastically strained along the plate periphery with
translational and rotational spring constant intensities K;;
and Kg;, respectively as shown in Fig. 1. A simple first-
order shear deformation theory is used to model the
displacements of the plate and stiffeners. By simplifying
assumptions on existing FSDT, some unknown variable
are reduced. The displacement field of the plate based
on existing FSDT is expressed as

Up = Uy (X, Y, £) + 2,0, (x, ¥, 1)
Vp = Vpp(X, ¥, 1) + 250, (x, y, 1) Q)
Wy = Wep(x,y, 1)
where u,, v,,and w, arethe displacementsinx, y, and
z directions, respectively; uq,, Vop, Wops Oxp, Byp are
five unknown displacements function of the mid-plane of
plate. The transverse displacement w, divides into

bending wg and shear ws parts. Assuming that 8,, =

aWB aWB

~ o and 6,, =——— vyields to change of the

displacement field for new theory as
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Fig. 1 Orthotropic sound radiation plate
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wy, = wg(x,y,t) + ws(x,y,t)

Clearly shown the unknown of displacement function
remains only four (u,,, v5p, Wg, Ws). The strain-
displacement relations of the plate are expressed as

_Oug, 0“wp
*T ox P gx2
Oy 02wy
Y= oy 7 dy?
0y, OV 0%wy
Yoy = dy T ox ~ 2% 0xdy ®)
dwg
Yxz = E
Owg
Yyz = W

The stress-strain relations of the orthotropic plate are
given as [16]

] [Qu Qi O 0 0 ] {Ex]
Q2 Q2 O 0 0 &y
0 Q4_4 0 0 YyZ (4)
TXZ 0 0 0 Q55 0 VXZ
Txy 0 0 0 0 Qged Yy
with
E;
Q11 = 1 v V%Vm
_ Vipkp
Gz = 1 _gleu )
5
_ 2
Q22 = 1—vi5v5
Qas = G23
Qss = Gy13 = Gy
Qs6 = G12

Where Q;;is reduce stiffness constant, E; isYoung’s
modulus in the ith direction, v,, is Poisson ratio, G;; is
shear modulus.

The strain energy, U,, of the plate is

1
Up = 2 (axgx +0yEy + 2TyyExy t 2TapEx, 6
i (6)

+ 27,8, )dV,

Using the relations in Egs. (1)-(4) and integration through
the plate thickness, Eq. (6) can be rewritten as

_1fafb L (au asz
“2), ) Quahy ax Q“12 0x?

+20u (53) (3)
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where K, is shear correction factor.
The kinetic energy, T, of the plate is

1 . , .
T, = E.fv pp(uzz, + v+ sz) av, )]

p

Refer to Eq. (1), this equation can be rewritten as

uyy )\’
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The strain energy store, U, stored in the elastic
restraints is written as
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The total strain energy U of the elastically restrained
orthotropic plate are written as

U=U,+Us (11)
Free vibration of the elastically restrained orthotropic

plate is solved by the Rayleigh-Ritz method. Thus, the
displacement of plate are expressed as

Ugp(x,y,t) = U(x,y) sinwt
Vo, (X, v, t) = V(x,y) sin wt

Op y y (12)
wg(x,y,t) = Wg(x,y) sin wt

WS(x!yl t) = Ws(x;Y) sin wt
With

> i)

j=1

i
uE,m =
i=1
C D
V) = Z Z Cijd:(p;(m)
i=14+A j=1+B
. (13)
I J
WaEm = > > Cydi(Ow;(n)
i=1+C j=1+D
M N
Ws(€,n) = Z Z Ciji (OY;(m)
i=1+41 j=1+]
where C; are unknown constants; 4,B,C,D,T,J,M,N
denote the numbers of terms in the series. Legendre’s
polynomials are used to represent the characteristic
functions, ¢ and . Let & =%x— 1 and n =27y— 1.
The normalized characteristic functions, for instance,
¢ (&), are given as

¢1(f) =1
$(O=¢ -1sé<1
For n > 3, (14)

$n(§) = [(2n = 3)§ X ¢y (§) — (n - 2)
X pn2(O]/(n—1)

With the satisfaction of the following orthogonally
condition:

0, ifn #m
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The extremization of the function I = U — T gives the
following eigenvalue problem.

[K — w*M]C =0 (16)

Where K and M are structure stiffness and mass
matrices; w is circular frequency. The natural
frequency and mode shape of the orthotropic plate can be
determined by solving above eigenvalue problem. The
terms in K and M are listed in the appendix

3. Plate sound radiation analysis

A variational approach is used to derive the
equation of motion for sound radiation plate panel
subjected to forced vibration. The panel excited by an
electro-magnetic transducer with a cylindrical voice coil,
the harmonic driving force F(t) =F,sinwt is
distributed uniformly around the periphery of the voice
coil. The amplitude of harmonic force is F, = BLI
with B = magnetic flux, L = wire length, and | = electric
current. The equation of motion can be expressed as

MC+DC+KC=F (17)
Where F is force vector containing the following terms

Fpm = =22 fzn <2r 9) (ﬁ e)da in wt
mn = , bm cos O | ¢, b cos sin wt, a8)
form =14+1,..,.Min=1+],..,N
= 0 for otheri,j
The damping matrix D is
[D] = a[M] + B[K] (19)

with ¢« = {w, B = 2{/w where { is damping ratio at
the first resonance frequency of elastically restrained
plate. Eqg. (19) can be solved using the modal analysis
method.

The vibration on the baffled plate with area S shown in
Fig. 2 creates the sound pressure p(r,t). This can be
determined using the first Rayleigh integral.

—w?2p . AS;
i OZAie](ZwHBi—kRi)R_il (20)
i

p(r,t) =

where p, is air density; £ is wave number (= @/c)
with ¢ being speed of sound; r, is the distance between
the plate center and the point of measurement; R; =
|, — ;| the distance between the observation point and
the position of the surface element at r;; 6 is phase
angle; j=+/—1. For air at 20 °C and standard
atmospheric pressure, p, = 1.2kg/m® and ¢ = 344 m/s.
The SPL produced by the plate is calculated as

— Prms
SPL =20 lOglO (m) dB (21)
with
1
T/2 2
Prms = [ [ we t)lZdt] 22)
T/2



Fig. 2 Sound pressure measurement on baffle plate

4. Result validation and discussion

The simple FSDT method is applied to analyze the
vibro-acoustic behavior of orthotropic sound radiation
plate of size 26.5 mm x 20.5 mm x 1 mm. The plate is
elastically restrained along periphery and trasversely
loaded 0.58415 N uniformly distribute on 9.35 mm radius
in the middle of plate as exciter. The properties of the
plate, spring constant intensity of the surround spring
material are listed in Table 1.

The first step to validate the method proposed in
this paper, the plate is modeled by three methods; Finite
element code ANSYS, FSDT, and simple FSDT.  Using
shell99 element type in ANSYS, plate is modeled to
determine five natural frequency and mode shape as basic
comparison purpose.

Table 1 Properties of orthotropic plate

Material constants Plate Surround
E; (GPa) 3.7

E> (GPa) 0.055

Vi2 0.03

V23 0.2

Vi3 0.03

G]z (GPa) 0.05

G2; (GPa) 0.05/6

G13 (GPa) 0.05

p (kg/m?) 300

Kz (N/m?) 47447
Kz (N) 0

In FSDT and simple FSDT, the five natural
frequencies and mode shape are derived using Rayleigh-
Ritz method with 10 terms characteristic function of
displacement.  The results of numerically solution
shown in Table 2 are close agreement between three
methods. Both existing FSDT and simple FSDT shown
the discrepancy with finite element method are less than
1%. The largest percentage discrepancy about 2.88%
occurs on fourth natural frequency of simple FSDT
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method.

The sound radiation on orthotropic plate is next
observation. The SPL curves of three methods shown in
Fig. 3 for comparison are almost exactly same, especially
between 20 Hz and 4 kHz. The curves dip and rise along
1.5 kHz because of plate stiffness, the stiffer of the plate
the better curve will be created.

Table 2 Mode shape and natural frequency of orthotropic
sound radiating plate

Methods
Mode Simple
shape no. ANSYS | FSDT [15] FSDT
1
NF(Hz) | 35480 | 3546 | 3549
D (%) | 0.06 0.03
NF (Hz) 5115 509.9 510.8
D (%) i L 031 | 014
_ ! T
3
_ — -
NF (Hz) 54112 | 5412 | 5424
D (%) | L 001 | 024

- "ftL
' -. >-1 ,ah.

NF(HZ)‘ 1073.4 ‘ 1071 ‘ 1100
D (%) | 022 | 248

; -—-

_é_l—

.

NF(HZ)‘ 1339.2 ‘ 1333 ‘ 1351
D (%) | 047 | 088

*)NF = Natural Frequency

D = Difference
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Fig. 3 SPL curve of orthotropic plate (h = 1 mm) with
three methods analysis
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Fig. 4 SPL curve of orthotropic piate with differeht
thickness (h) and plate ratio a/b = 2.92
SPL vs Freg
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Flg 5 SPL cur()e of '(‘)rthotrd.pic pl'ate With E1/E2 (a/b =
1.25, E2 = 0.055 GPa)

The next step of proving the proposed method in
this paper to ensure it suitable for vibro-acustic
orthotropic plate analysis, some modification of plate
properties are made and analyzed. The plate ratio a/b =
2.92 with a = 76 mm, b = 26 mm and several different
thickness (hp) 1.3 mm, 1.5 mm, and 2 mm are used to
analyze the plate thickness plate ratio effect and SPL
curve behavior. Fig. 4 clearly shows the thickness of
plate directly affect the magnitude of SPL curve, the
thicker of plate sound radiation the lower sound radiation
created. On the other hand, the thickness of plate also
yield its stiffness. It is shown rise and dip of SPL curve
around 1 kHz, where the rise and dip curve of the thinnest
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plate (1.3 mm) occurs below 1 kHz while the others two
it shift to higher than 1 kHz. Consequently, the SPL
magnitude will decrease in line with increasing the
thickness and weight of plate.

Finally, the effects of the ratio of the plate Young’s
moduli (E1/E2) on the SPL curve of are studied. Setting
E2 = 0.055GPa, the SPL curves for E1/E2 =1, 2, and 3
are shown in Fig. 5 for comparison. The small variations
of the SPL curves in some frequencies for these cases
have demonstrated the fact that E1/E2 has negligible
effects on the SPL curve behavior

5. Conclusions

Simple FSDT approach is adopted to analyze the
vibro-acoustic of orthotropic sound radiating plate. The
equations is derived with Rayleigh-Ritz method for
natural frequency and mode shape analysis and the first
Rayleigh integral for SPL curves. Validation studies
show that reducing one variable on existing FSDT yield
the prediction close each other. In conclusion, the present
simple FSDT method proposed show the accuracy of
predicting the natural frequency, mode shape, and SPL
curve of orthotropic sound radiating plate close to
existing theory.
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