Morphological Diversity of Avocados (Perseaamericana Mill.) in Central Aceh, Indonesia

Ismadi Yunus, Rd. Selvy Handayani, Hafifah, Rahmiyati

Abstract: Central Aceh is known as a center of avocado production in Indonesia. The information about the morphology of avocados in Central Aceh is still very few due to the lack of researches on avocados in Central Aceh. This study aimed to evaluate the morphology of avocado in Central Aceh, Indonesia. The study was conducted using the description method using an avocado descriptor from the International Plant Genetic Resources Institute (IPGRI, 1995) and data were analyzed using the NTSYSpc. The results revealed that the diversity of avocados in Central Aceh Regency was formed with diversity values ranging from 45-81%, at the level of similarity coefficient 46% of the two main groups: first group consisting of 11 accessions and second group consisting of 4 accessions. In general, the avocado morphology of Central Aceh has similarities in the outer appearance of fruits, stalks, flesh, skin, and seeds.

Index terms : fruit shape, pedicel, skin color, seed, gloss

I. INTRODUCTION

Central Aceh is known as a center of Aceh avocado production. Avocado plantation in Central Aceh District has not been optimally developed and the preservation is unwell preserved even though avocado plants considered as a source of livelihood and economyof the community in Central Aceh. Avocados are widely cultivated in the Gayo highlands, Center Aceh and Bener Meriah at an altitude between 800-1400 m above sea level. Avocado plants have highgenetic diversity [1, 2, 3]. This diversity is also Believed to be found in Indonesian avocados and it is very beneficial for the cultivation. Unfortunately, the information about the existence of this genetic diversity is still poor because the researches about it are still scanty. Researches on avocado plants in Central Aceh have onlybeen carried out on the characterization of vegetative parts where avocado plants have very diverse characters [4]. Researches on other local Acehnese fruit plants is still very few and so far has been done in durian plants only[5, 6]. The purpose of this study was to analyze the morphological diversity of avocados in Bintang District, Central Aceh Regency.

Revised Manuscript Received on December 22, 2018.

Ismadi Yunus, Department of Agroecotechnology, UniversitasMalikussaleh, Kampus Cot Tgk. NieReuleut, KecamatanMuaraBatu, Kabupaten Aceh Utara, Indonesia, 24355.Corresponding author : ismadi@unimal.ac.id

Rd. Selvy Handayani, Department of Agroecotechnology, UniversitasMalikussaleh, Kampus Cot Tgk. NieReuleut, KecamatanMuaraBatu, Kabupaten Aceh Utara, Indonesia

Hafifah, Department of Agroecotechnology, UniversitasMalikussaleh, Kampus Cot Tgk. NieReuleut,

KecamatanMuaraBatu, Kabupaten Aceh Utara, Indonesia **Rahmiyati**, Department of Agroecotechnology,

UniversitasMalikussaleh, Kampus Cot Tgk. NieReuleut, KecamatanMuaraBatu, Kabupaten Aceh Utara, Indonesia

II. MATERIALS AND METHODS.

A. Place and Time

This research was conducted in Bintang District, Central Aceh, Indonesia from March to June 2017.

B. Material

The materials used werematureavocados, distilled water, refractometers, analytic scales, scales, vernier caliper, and cameras.

C.Research Methods

The avocados used were the avocados collected from the previous research which have been characterized and explored in 2016. Observations were done referring to guidelines Descriptors for Avocado (*Persea* spp.) From the International Plant Genetic Resource Institute (IPGRI) [7].

III. RESULTS AND DISCUSSIONS

A.Fruit characters

There were 5 forms of avocadosfound in Central Aceh. The most common form was narrowly obovate. The length was between 7.25 cm - 12.45 cm with an average length of 10.80 cm. The fruit had a width of 7.45-10.57 cm with an average of 9.12 cm. Fruit weight between 374-590 grams with an average weight of 471.85 grams. The uniformity of the fruit form was categorized as medium, with the basic shape wasflattened. The apex was generally slightly flattened with the position of apex fruit was symmetrical (Table 1).

B.Fruit Stalk Characters

For the green fruits, its stalk positions were divided into two types, asymmetrical and centralwith almost the same amount of stalk. The fruit stalks were almost had conicalshape although there were also 2 of15of them had rounded stalks and generally the fruit stalks had*nailheads*. The fruit stalk had a length of between 5.60-15.40 cm with an average length of 9.57 cm. The fruit stalk was between 4.10-7.42 cm in diameter and the average diameter is 5.49 cm (Table 2).

1401

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

C. Fruit Skin Character

The surface of avocado skin in Central Aceh Regency is generally shiny enough although it is also found smooth and rough. The skin color of immature fruits is green and it turns into purple, dark green, red and blackwhen they are mature enough. The lenticel density on the rind divided into three: dense, intermediate, sparse. The skin thickness was between 0.63 to 1.45 cm with an average thickness of 1.18 mm(Table 3). The weight of fruit skin was between 30.79-57.54 grams with an average weight of 43.04 grams. The immature and mature fruitscould have the same color, but it could be also different according to the variety of plants [8]. Table 1. Characters of Avocados in Central Aceh, Indonesia

ssion	Fruit Shap es	Leng ths (cm)	Wi dth (c m)	Fruit base shape	Fruit apex shape	Fruit apex position	Wei ght (g)
Gayo BT01	Sphe roid	11,4 8	10, 57	Flatte ned	Slightly depress ed	Asymmetri c	469, 00
Gayo BT02	narro wly obov ate	7,25	8,6 2	Flatte ned	Slightly depress ed	Asymmetri c	400, 00
Gayo BT03	narro wly obov ate	11,2 5	9,2 8	depres sed	Slightly depress ed	Asymmetri c	518, 00
Gayo BT04	narro wly obov ate	12,3 4	9,9 1	depres sed	Slightly depress ed	Asymmetri c	590, 00
Gayo BT05	Flatt ened	7,53	8,8 1	Flatte ned	Slightly depress ed	Asymmetri c	397, 00
Gayo BT06	Clav ate	11,6 3	9,4 0	Flatte ned	Slightly depress ed	Asymmetri c	514, 40
Gayo BT07	narro wly obov ate	10,0 9	7,4	Flatte ned	Slightly depress ed	Asymmetri c	405, 00
Gayo BT08	narro wly obov ate	12,1 3	8,2 8	Flatte ned	flattene d	Central	374, 00
Gayo BT09	Sphe roid	10,4 6	9,2 0	Flatte ned	Slightly depress ed	Asymmetri c	457, 00
Gayo BT10	Flatt ened	10,2 6	9,5 4	Flatte ned	Slightly depress ed	Asymmetri c	484, 00
Gayo BT11	Sphe roid	10,4 4	8,8 2	depres sed	Slightly depress ed	Asymmetri c	449, 00
Gayo BT12	Sphe roid	12,1 4	9,6 5	depres sed	Flattene d	Central	589, 00
Gayo BT13	Pyrif orm	12,4 2	8,4 9	Flatte ned	Flattene d	Central	413, 40
Gayo BT14	Sphe roid	11,6 1	10, 19	Flatte ned	Slightly depress ed	Asymmetri c	540, 00
Gayo BT15	Sphe roid	10,9 0	8,6 5	Flatte ned	Flattene d	Central	478, 00
Avera ge/ Domi nant	narro wly obov ate	10,8 0	9,1 2	Flatte ned	Slightly depress ed	Asymmetri c	471, 85

Table 2. Characters of pedicels of Avocados in Central Aceh, Indonesia

Accession	Pedicel position on fruit	Pedice l shape	Nailhe ad	Pedic el Color	Pedice 1 Length (cm)	Diameter (mm)
GayoBT01	Asymmet rical	Conica 1	present	Gree n	14,20	5,35

GayoBT02	Central	Conical	present	Gree n	10,13	5,09
GayoBT03	Asymmet rical	Conica 1	present	Gree n	8,88	5,55
GayoBT04	Asymmet rical	Conica 1	present	Gree n	9,40	6,41
GayoBT05	Asymmet rical	Conica 1	present	Gree n	8,20	4,91
GayoBT06	Asymmet rical	Conica 1	present	Gree n	9,60	4,32
GayoBT07	Central	Conica 1	present	Gree n	8,84	4,59
GayoBT08	Central	Conica 1	Absent	Yello w	9,68	5,61
GayoBT09	Central	Conica 1	present	Yello w	9,42	5,93
GayoBT10	Asymmet rical	Conica 1	present	Gree n	11,94	5,39
GayoBT11	Asymmet rical	Conica 1	present	Gree n	5,94	7,42
GayoBT12	Central	Round ed	Presen t	Yello w	5,60	5,59
GayoBT13	Central	Conica 1	Absent	Gree n	9,47	6,01
GayoBT14	Central	Round ed	Presen t	Gree n	6,80	6,09
GayoBT15	Asymmet rical	Conica 1	Presen t	Gree n	15,40	4,10
Average/ Dominant	Asymmet rical	Conica 1	Presen t	green	9,57	5,49

Table 3.Fruit skin surface of avocados in Central Aceh, Indonesia

Access ions	Fruit skin surfa ce	Skin Color of Unrip e Fruits	Skin Colou r of Matur e Fruits	Lenticel Density	Fruit Thickne ss (mm)	Skin Weig ht (g)
GayoB T01	Inter medi ate	Dark green	Purpl e	Sparse	1,09	40,14
GayoB T02	Inter medi ate	Dark green	Purpl e	Intermedia te	1,45	45,98
GayoB T03	Inter medi ate	Dark green	Purpl e	Sparse	1,09	40,14
GayoB T04	Smo oth	Dark green	Dark green	Intermedia te	1,10	50,97
GayoB T06	Smo oth	Dark green	Dark green	Dense	1,19	39,89
GayoB T07	Inter medi ate	Dark green	Purpl e	Intermedia te	1,18	38,05
GayoB T08	Roug h	Dark green	Dark green	Intermedia te	1,28	47,55
GayoB T09	Inter medi ate	Dark green	Purpl e	Dense	1,90	57,54
GayoB T10	Inter medi ate	Dark green	Dark green	Sparse	1,10	37,86
GayoB T11	Smo oth	Dark green	Purpl e	Sparse	1,14	42,46
GayoB T12	Inter medi ate	Light green	Red	Intermedia te	1,16	57,72

and Eng Recent Blue Eyes Intelligence Engineering to leurnal laurnal or

1402

Published By:

& Sciences Publication

GayoB T13	Roug h	Dark green	Red	Intermedia te	1,22	41,15
GayoB T14	Inter medi ate	Dark green	Dark green	Intermedia te	0,86	43,17
GayoB T15	Inter medi ate	Dark green	Dark green	Intermedia te	0,63	30,79
Averag e/ Domin ant	Inter medi ate	Dark green	Dark green	Intermedia te	1,18	43,04

.Flesh Characters

The fruit fleshes are yellow and white. The flesh thickness between 1.40-2.90 cm with an average thickness of 1.78 cm. The flesh weight between 239.77-446.73 grams with an average weight of 330.75 grams and an average *edible portion* 71.12%. Fruit flesh had a total dissolved solid of 7.21oBrix, low levels of bitter taste and flesh fiber. Avocado flesh reached 65% of the total weight of fruit [8], and avocados are included in the superior category if the *edible portion* is greater than 65% [9].The fruit flesh did not change in color after four hours of splitting. The color change of fruit flesh after being left for 4 hours was strongly influenced by the phenolic component in the avocado flesh which causes the avocado flesh to be quickly oxidized, phenol content in avocado reaches $50,913 \pm 0,424 \mu g / ml$ [10].

E.Seed Characters

The seeds of avocados in Central Aceh are various: oblate, heart-shaped and rounded base of rounded tops. The most common color seeds were cream, followed by pink and ivory. Seeds had an average weight of 59.06 grams, seed length and diameter average of 4.41 and 4.63 cm. If the fruit is split, the length and diameter of the seed chamber would be 4.89 and 4.74 cm, respectively (Table 5). Avocado seeds are round like a ball with a diameter of 2.5 to 5.0 cm and white seed reddish pieces [11]. The Central Aceh avocado seeds are predominantly flattened-shaped, rounded apex and cream in color.

F.Analysis of Avocado Diversity

Cluster analysis is a technique for grouping individuals or objects into certain groups where each object in the same cluster has similarities with each other compared to other cluster members. In particular, the purpose of cluster analysis is to classify sample entities into a small number of specialized groups based on similarities between entities. Cluster analysis is a statistical technique that is useful for grouping objects or variables into certain groups where each object has properties and characteristics that are close together.

Based on scoring data, 15 avocado accessions were obtained by dendogram as in Figure 1 which formed two main groups at 45% similarity coefficient level. The value of the diversity formed ranges from 45-81%. The grouping done was not based on cultivars and the environment of the growing place but it based on the similarities in the *Retrieval Number:F12480476S519/19*©*BEIESP*

characters used for analysis. The first group consisted of 11 levels of accession which separated at 45% similarity level. The second group consisted of 4 accessions which separated at 51.4% similarity level. Genetically, the type of variety and the place where it is grown are the main factors that influenced the existence of differences and similarities in the characteristics of the dendogram grouping. A high degree of similarity in plants can occur because they come from the same parent plant. The similarity is said to be insignificant if it is less than 60% and vice versa, the similarity is said to be near if the number approaching 100%.

Table 4. Fruit flesh of Avocados in Central Aceh,Indonesia.

							-
			Edi				
						Fle	s Color
	Flesh	Flesh	tio			h	of fruit
Access	Thickne	weight	n	PTT	Bitter	Fib	r after 4
ions	ss (cm)	(g)	(%)	(°Brix)	ness	e	hours
10115	bb (em)	(6/	(/0)	(Biiii)	ness	L	Color
Gavo			75			0	unchange
BT01	1.68	346.29	39	7.59	Low	w	d
	/	, -		.,		L	Color
Gayo			71,			0	unchange
BT02	1.61	317.01	71	10.46	Low	w	d
	ĺ.					L	Color
Gayo			75,			0	unchange
BT03	1,63	397,02	83	7,80	Low	w	d
							Color
Gayo		446,				Lo	unchange
BT04	2,36	73	76,26	8,24	Low	w	d
							Color
Gayo		262,				Lo	unchange
BT05	1,67	04	66,50	7,32	Low	W	d
							Color
Gayo		360,				Lo	unchange
BT06	1,85	84	72,94	7,65	Low	W	d
							Color
Gayo		289,				L	unchange
BT07	1,53	05	71,38	7,87	Low	OW	d
							Color
Gayo		239,				Lo	unchange
BT08	1,40	77	66,35	5,88	Low	W	d
							Color
Gayo		299,			_	Lo	unchange
BT09	1,46	25	66,26	7,93	Low	W	d
6		200					Color
Gayo	2.00	289,	6 7 0 6	6.00		Lo	unchange
B110	2,90	48	65,86	6,83	Low	W	d
C		227				Ŧ	Color
Gayo	1.67	327,	72.00	7.69	T	LO	unchange
DIII	1,07	20	72,00	7,08	LOW	w	u Color
Gavo		401				Lo	unchange
BT12	1.86	401, 63	70.22	5.10	Low		d
D112	1,00	05	10,22	5,10	LOW	int	u
1						er	
						me	Color
Gavo		266				dia	unchange
BT13	1.51	54	64.58	4.71	Low	te	d
2110	1,01		51,00	.,, , 1	10		Color
Gavo		381.				Lo	unchange
BT14	1,65	44	70,35	6,67	Low	w	d
	,		,				Color
Gayo		336,				Lo	unchange
BT15	1,92	97	80,59	6,38	Low	w	dŬ
Averag		ľ					
e/							Color
Domin		330				Lo	unchange
ant	1,78	,75	71,12	7,21	Low	w	d

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

Morphological Diversity of Avocados (Perseaamericana Mill.) in Central Aceh, Indonesia

Acces sion	Seed Shape	See d colo ur	Seed weigh t(g)	Seed length(mm)	Seed diameters (mm)	Leng th of Seed cavit y(m m)	Diam eter of seed cavit y(m m)
Gayo BT01	sphero id	Cre am	73,33	4,70	5,34	5,09	5,35
Gayo BT02	Base flatten ed, apex rounde d	Pink	89,90	4,85	5,38	5,88	5,44
Gayo BT03	Cordif orm	Cre am	89,04	5,03	5,41	5,66	5,77
Gayo BT04	Base flatten ed, apex conical	Cre am	66,73	4,80	4,82	6,24	5,79
Gayo BT05	Base flatten ed, apex rounde d	Cre am	78,36	4,39	5,10	4,88	5,28
Gayo BT06	Base flatten ed, apex rounde d	Ivor y	79,47	4,75	5,21	5,55	5,53
Gayo BT07	sphero id	Cre am	56,23	4,18	4,83	4,73	5,05
Gayo BT08	Cordif orm	Pink	59,06	4,41	4,63	4,89	4,74
Gayo BT09	Base flatten ed, apex rounde d	Cre am	88,52	4,85	5,31	5,66	5,81
Gayo BT10	Flatten ed	Cre am	93,12	4,79	5,62	5,20	5,54
Gayo BT11	Cordif orm	Cre am	75,28	4,60	5,12	5,21	5,33
Gayo BT12	sphero id	Cre	111,9 9	5,02	5,58	5,45	5,97
Gayo BT13	Base flatten ed, apex conical	Cre am	85,60	4,73	5,25	5,28	5,48
Gayo BT14	Base flatten ed, apex conical	Cre am	90,90	4,80	5,38	5,36	5,63
Gayo BT15	Base flatten ed, apex rounde d	Cre am	74,01	4,90	4,96	5,50	5,13
Avera ge/ domin ant	Base flatten ed, apex rounde d	Cre am	80,77	4,72	5,19	5,37	5,46

b. Avocado plants in Central Aceh have a low level of diversity where the similarity coefficient ranges from 0.46 to 0.81.

ACKNOWLEDGEMENTS

We would like to thank the Ministry of Research, Technology and Higher Education of the Republic of Indonesia for funding this research through the PDUPT grant in 2018.

REFERENCE

- 1. Accessed on 11 September 2018). SISNI.bsn.go.id/index.php/sni_main/sni/index_simple SNI 01-3168-1992 (Accessed on 18 May 2017)
- 7. Febrianti, Novi danMuhammad Zulfikar. 2016. Aktivitasantioksidanbuahalpukat (perseaamericana) danbuahstroberi (Fragariavesca L). Universitas Ahmad Dahlan. Yogyakarta.
- 3. Balitbu, litbang. Pertanian. 2015.
- HasilPenelitianInformasiTeknologiPengkajianJenis-JenisAlpukat (online). http:///www.balitbu.litbang.pertanian.go.id/ind/index.php, (Accessed on 06 March 2018)
- Ismadi, Rd. SelvyHandayani, Hafifah, IqbalFahrezi, 2018, Exploration and Morphological Characterization of Vegetative Part of Avocado at BebesanSubdistrict Central Aceh District, Indonesia(http://www.worldagroforestry.org/sites/treedbs/treedatabas es.asp
- 6. M.M. Martinez Pacheco, R. Lopez Gomez, R. Salgado Garciglia, M. Raya Calderon, R.E. Martinez Munoz. 2011

1404

Published By: Blue Eyes Intelligence Engineering & Sciences Publication

- Griesbach, J. 2005. Avocado Growing in Kenya.World 1. Agroforestry Centre, Nairobi, Kenya.
- 2. Rd SelvyHandayani, Ismadi, 2018. Inventory and Morphological Characterization of Durian (Duriozibethinus) in Langkahan and Sawang Sub-District of North Aceh Indonesia, Emerald Publishing Limited.
- 3. Rd SelvyHandayani, Ismadi, 2017, AnalisisKeragamanKualitasBuah Durian Unggulan (Duriozibethinus) Aceh Utara, JurnalHortikultura Indonesia.
- [IPGRI] International Plant Genetic Resource Institute, 1995. 4. Descriptors for Avocado (Perseaspp). Rome, Italy, Internasional Plant Genetic Resource Institute.
- Orwa C, A Mutua, KindtR ,Jamnadass R, S Anthony. 2009 5. AgroforestreeDatabase:a tree reference and selection guide version 4.0

Published By:

Sciences Publication