Proceedings of MiCoMS 2017 Life-Cycle Performance of a Bridge Subjected to Multiple Heavy Vehicle Impacts Maizuar, Lihai Zhang, Russell Thompson, Herman Fithra. Article information: To cite this document: Maizuar, Lihai Zhang, Russell Thompson, Herman Fithra, "Life-Cycle Performance of a Bridge Subjected to Multiple Heavy Vehicle Impacts" In Proceedings of MiCoMS 2017. Published online: 11 Jul 2018: 13-18. Permanent link to this document: https://doi.org/10.1108/978-1-78756-793-1-00003 Downloaded on: 06 February 2019, At: 08:56 (PT) References: this document contains references to 0 other documents.

The fulltext of this document has been downloaded 160 times since 2018* Users who downloaded this article also downloaded: (2018),"The Role of Law in Economic Development: To Develop a Special Economic Zone in Order to Build a National and Regional Economy", Emerald Reach Proceedings Series, Vol. 1 pp. 209-214 (2017),"How long is UK property cycle?", Journal of Property Investment & Finance, Vol. 35 Iss 4 pp. 410-426 https://doi.org/10.1108/JPIF-10-2016-0083 Access to this document was granted through an Emerald subscription provided by All users group For Authors If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.com Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services. Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. *Related content and download information correct at time of download.

Life-Cycle Performance of a Bridge Subjected to Multiple Heavy Vehicle Impacts Maizuar Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia Department of Civil Engineering, University of Malikussaleh, Aceh, Indonesia Lihai Zhang Department of Infrastructure

Sources found:
Click on the highlighted sentence to see sources.

Internet Pages

First, the importance and characteristics of life-cycle analysis is described. Then, model for damage accumulation and life cycle as a result of heavy vehicle impacts is discussed. Finally, the probability of failure of a bridge subjected to vehicle impacts as a result of change in life-cycle parameters is presented. Findings show that damage size caused by both vehicle impacts and loss of initial structural capacity have a great impact on the long-term safety of bridges. In addition, the probability of failure of a bridge under different threshold limits indicates that the structural intervention (e.g., repair or maintenance) should be undertaken to extend the service life of a bridge. The first author wishes to acknowledge Indonesian Endowment Fund for Education for the support. Maizuar, Lihai Zhang, Russell Thompson, Herman Fitra. Published in the Emerald Reach Proceedings Series. This article is published under the Creative Commons Attribution (CC BY 4.0) licence.

It is suggested that there would be a further study to estimate the magnitude of bridge damage as a result of vehicle impact using the full-scale impact test or computational simulation. Practical implications This will allow much better predictions for residual life of bridges which potentially could be used to support decisions on health and maintenance of bridges.

Introduction Bridges are critical transportation infrastructure networks and often are subjected to heavy traffic. The life-cycle performance for assessing the time-dependent probability of failure of bridges subjected to multiple vehicle impact has not been fully discussed so far. Keywords Life-cycle, vehicle impact, structural deterioration, bridge All papers within this proceedings volume have been peer reviewed by the scientific committee of the Malikussaleh International Conference on Multidisciplinary Studies (MICoMS 2017).
loads, harsh environments, and accidental damage (Deco and Frangopol, 2013; Frangopol and Soliman, 2016). For example, some catastrophic failure of bridges occurs because of collision accidents between bridges and heavy vehicles (e.g., over 30 tons). As seen in Maitland Pedestrian Bridge, Australia, in 2009, the collision accident between a bridge and medium truck collapsed the bridge, four persons were injured, and the road was closed for four days (Greg, 2009).

The risk of damage caused by vehicle impacts can be more vulnerable for ageing bridges with an increased traffic loading. Thus, the permanent degradation and frequent vehicle collision with bridge damage highlighted the importance of safety bridges and traffic system in metropolitan areas. Life-cycle performance of a structure is directly affected by different deterioration mechanisms such as sudden damaging extreme events, progressive deterioration, or combination of both (Melchers et al., 2008; Iervolino et al., 2013).

Vehicle collision with bridge can be described as an extreme event that occur randomly in time and cause sudden damage to bridge structure (e.g., bridge pier). Therefore, the life-cycle performance of a bridge caused by heavy vehicle impacts can be modeled as shock degradation. In recent decades, extensive research has been performed to develop an analytical model for shock degradation (Nakagawa, 1976, 1985; Feldman, 1977; Barlow and Proshan, 1996). However, the majority of shock-based degradation and failure models developed mainly focus on earthquakes.

Such application related to earthquake damage of structures can be found in the study of Rackwitz et al. (2005) and Sanchez-Silva and Rackwitz (2004). In addition, the combined effect of multiple deterioration mechanisms on structures (e.g., shock and progressive deterioration) has also been investigated (Yang and Klutke, 2000; Sanchez Silva et al., 2011). However, highway bridges could also be subjected to accidental heavy vehicle impacts and their effects on damage accumulation have not been fully discussed in the literature so far.

The purpose of this study is to develop a numerical framework to predict the time-dependent probability of failure of a bridge subjected to multiple vehicle impacts. 1.1. Life-cycle performance of a bridge subjected to vehicle impacts The performance of a bridge system or a component throughout its lifetime subjected to multiple vehicle impacts can be represented by a general life-cycle model as shown in Figure 1.

In a life-cycle model, the performance of a system is usually quantified in terms of structural capacity (e.g., material resistance and drift). The structural lifetime is defined as the length of time required by a structure to reach a predefined performance threshold values (e.g., k* and s*). As shown in Figure 1, the threshold k* represents the minimum Proceedings of MiCoMS 2017 14 structural performance level while the threshold s* denotes the ultimate structural capacity which refers to structural collapse.

In this study, the damage accumulation caused by heavy vehicle impacts and their occurrences was assumed to occur randomly over time with each truck impact resulting in a random reduction in structural capacity. Therefore, the structural damage of a bridge can be modeled using marked point process. Let us consider a structural system with an initial capacity V₀ as shown in Figure 1. If the shock size Yvi and the time interval between shocks Dvi are random variables, then the remaining capacity of the component at a particular time Vv(t) can be computed as Vv(t) = V₀ - ∫ Yvi * Dvi where s* is the limit state design
requirement of the bridge and $D_v(t)$ is the accumulated deterioration as a result of N heavy truck impacts given by $D_v(t) = \sum_{i=0}^{N} Y_{vi}$. (2) Then, the remaining structural capacity $V_v(t)$ can be rewritten as $V_v(t) = V_0 - \sum_{i=0}^{N} Y_{vi}$. (3) If distribution of $G_v(y)$ describes the probability of the bridge reaching a certain damage level as a result of vehicle impacts, then the probability of failure at a given time $P_v(t)$ is given by $P_v(t) = \int_{s^*}^{y} G_v(y) \, dy$. (4) Assuming that the inter-arrival time of shocks t_{vi} and their sizes Y_{vi} are independent and identically distributed (iid) as well as exponentially distributed, a numerical procedure using Figure 1 was developed and the average values of the bridge probability of failure were computed after 100 simulations.

Life-Cycle Model of a Structure Subjected to Shock Events (e.g., Vehicle Impacts) Life-Cycle Performance 15 MATLAB program was developed and the average values of the bridge probability of failure were computed after 100 simulations. 2. Case study The Montague Street Bridge located in South Melbourne, Australia, was used as a case study. This railway bridge has a length of 70 m and width of 7.5 m. Information on vehicle collision with bridges in Melbourne Australia was based on Crash Stats Data provided by Data Victoria.

Using exponential distribution, the inter-arrival heavy vehicle impacts was obtained statistically with the mean of 1.5 years. In this study, we assume the following: The initial structural capacity of the bridge V_0 is 100%. The threshold intervention s^* (i.e., limit state) is 30%. The shock size (damage size) caused by a truck impact is exponentially distributed. The remaining structural capacity of the bridge $V_v(t)$ is exponentially distributed with a mean of 0.05.

Each vehicle impact on bridge is assumed to be statistically independent. 3. Results and discussion The effect of three different mean damage sizes of the bridge caused by heavy vehicle impacts Y_{vi} (i.e., 2%, 3%, and 5%) on probability of failure of a bridge is shown in Figure 2. The results show that the increase in damage size caused by heavy vehicle impacts significantly increases the probability of failure and led to the decrease in the remaining service life of the bridge.

Further, compared to the damage size of 2%, the damage sizes of 3% and 5% could result in around 32% and 50% reduction in residual life of a bridge, respectively. As deterioration increases, the structural capacity of a structure decreases. Figure 3 compares the probability of failure of the bridge under different initial structural capacities u_0 (i.e., 95%, 90%, and 85%). The results show that the loss of initial structural capacity could generally lead to the significant decrease of the probability of failure of the bridge.

Figure 2. Probability of Failure of the Bridge under Different Damage Sizes Proceedings of MiCoMS 2017 16 The threshold intervention s^* describes the damage states of a bridge. Figure 4 shows the probability of failure of the bridge under different threshold intervention capacities (e.g., 2.5%, 10%, 30%, and 60%). The simulation results in Figure 4 show that the probability of failure of the bridge is larger for minor damage states and smaller for severe damages. 4.

Conclusion A life-cycle performance of a bridge subjected to multiple heavy vehicle impacts is presented. In particular, this study develops a numerical procedure for assessing the probability of failure of a bridge when both inter-arrival time of impacts and their sizes are random. First, the importance and characteristics of life cycle analysis is described. Then, model for damage accumulation and life cycle as a result of heavy vehicle impacts is Figure 3.
Probability of Failure of the Bridge Under Different Initial Structural Capacities Figure 4. Probability of Failure of the Bridge under Different Damage States Life-Cycle Performance 17 discussed. Finally, the probability of failure of a bridge subjected to vehicle impacts as a result of change in life-cycle parameters (e.g., damage size caused by vehicle impact and loss of initial structural capacity and threshold intervention) is presented.

The outcomes of the study show that damage size caused by both vehicle impacts and loss of initial structural capacity has a significant effect on the residual life of bridges. In addition, the probability of failure of a bridge under different threshold limits is useful for making decisions related to structural maintenance or repair in the future. References Barlow, R.E. and Proschan, F. (1996).

Probability in the Engineering and Informational Sciences, Vol. 14, No. 4, pp. 445-460. Corresponding author Maizuar can be contacted at maizuar@unimal.ac.id Proceedings of MiCoMS 2017 18