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ICACSIS 2016 Solving Fuzzy Multi-objective Optimization Using Non- dominated Sorting 

Genetic Algorithm II Trisna l ,2, Marimin 2 , Yandra Arkeman 2 . IDepartment of Industrial 

Engineering, Malikussaleh University, ~hokseuma~e, A~eh, IndonesIa 2Department of 

Agroindustrial Technology, Bogor Agricultural University Campus IPB Darmaga, Bogor 

16002, Indonesia Email: ina081O@)gmail.com Abstract-This paper presents the stages 

for solving fuzzy multi-objective optimization problems using genetic algorithm 

approach.  

 

Before applying non-dominated sorting genetic algorithm II (NSGA II) techniques to 

obtain optimal .solution, first multi-objective possibilistic (fuzzy) programmmg was 

converted into an equivalent auxiliary crisp model to form deterministic progl'amming 

model. To detel'mine the best solution from Pareto set, we implied feasibility degree of 

decision variable and satisfaction degree of decision maker.  

 

The best optimal solution is the intersection between a-feasibility degree and 

satisfaction degree of the decision makers that has the highest fuzzy membership 

degl·ee. For numerical experimen.t, we used simple formulation in multi-objective fuzzy 

Imear programming model with three maximum objective functions, three decision 

variables, and six constraints.  

 

The comparison of the results shows that our results are better for two objectives than 

that of compromising pl·ogramming. Keywords- fuzzy numbers, NSGA II, satisfaction 

degree, multi-objective optimization I. INTRODUCTION In the real world, decision maker 

often faces several objectives that must be satisfied simultaneously and several 

objectives sometimes conflict occur.  

 



To satisfy the objectives are required multi-objective optimization approach for solving 

the problem. Currently, there are some techniques to be performed for solving the 

multi-objective optimization (MOO) problems. Generally, MOO techniques classified 

into two classes, which are classical and evolutionary method [1].  

 

The classical method converts the multi-objective problem into single-objective by 

aggregating objective functions which optimize the most important objective and 

perform the other objectives as constraints. Evolutionary methods are imitating natural 

evolution principle that generate stochastic searching and optimization algorithm. 

Non-dominated sorting genetic algorithm II(NSGA II) is one of evolutionary algorithm 

model that presents computation and identification of Pareto front set efficiently 

through surviving diversity without using various additional parameters [1].  

 

Moreover, we often encounter the problem of uncertainty, imprecision, and vagueness 

such as product demand, product quality, lead time, production rate, etc. Zadeh [2] 

introduced fuzzy numbers set to describe the ambiguity, vagueness, and uncertainty in 

an assessment or measurement. In fuzzy set theory, each fuzzy set is defined by the 

membership functi~n where the value is in the interval 0 and 1.  

 

Fuzzy numbers In the form of a mathematical equation are called as fuzzy mathematical 

programming. Inuiguchi and Ramik [3] classified fuzzy mathematical programming into 

two main classes, namely: 1) flexible programming, which is fuzzy programming of 

ambiguity when there is flexibility on the target value given in objective function and 

constraints flexibility, and 2) possibilistic programming, which is fuzzy programming of 

coefficients vagueness in the objective function and constraints. Several optimization 

methods have been developed to solve fuzzy multi-objective model.  

 

Li and Yang [4] converted fuzzy multi-objective formulation into single-objective model 

and then optimized by using genetic algorithm approach. Fuzzy multi-objective 

optimization (fuzzy programming) model can be transformed into deterministic 

multi-objective optimization before employing genetic algorithm approach to solve the 

problem [5]. Xu et al.  

 

[5] used expected value operator based on [6] and chain-constrained operator to 

convert fuzzy programming into deterministic programming. Mahnam et al. [7] 

developed an inventory model for assembling supply chain network with demand and 

reliability of suppliers in fuzzy condition. They used Particle Swarm Optimization (PSO) 

approach to obtain optimum solution. Yazdiana et al.  

 

[8] established fuzzy multi-objective mixed integer linear programing model and then 



performed numerical solution using compromise programming method. Ghasemy 

Yaghin et al. [9] transformed the fuzzy non- linear multi-objective model into an 

equivalent multi-objective crisp model. They converted multi-objective model into 

single- objective model using fuzzy goal programming m~th?d ..  

 

To obtain the optimum solution they conduct the optimIzation using particle swarm 

optimization (PSO) approach. Arenas Parra et al. [10] solved fuzzy multi-objective 

problem using compromise programming approach. Torabi and Hassini [11] used novel 

interactive fuzzy method (called TH method) approach to solve multi-objective linear 

programming problem. Peidro et al.  

 

[12] converted fuzzy multi-objective linear programming (FMOLP) model into auxiliary 

crisp single-objective linear using TH fuzzy programming method. 6zceylan and Paksoy 

[13] employed the weighted average method to convert fuzzy constraint model into 

crisp constraint model. The initial model offuzzy multi-objective optimization is 

converted into equivalent ordinary linear programming using auxiliary variable L.  

 

Completing literature review about multi-objective optimization can be seen in [14]. 542 
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triangular fuzzy for parameter Ai All pairs of fuzzy numbers A and B, in which the degree 

of - - A is greter than that of B based on [16] and [18] are given as follows: (5) (2) (3) (4) 

x EI(A) = [Et ,E~] =df~ (x)dx,fg~ (x)dx] =[~(aP + ami),~(am, + aO)] o 0 _ EA+E A 

aP+am'+a""+aO EV(A)=-' __ 2 =------ 2 4 1 0 jikaE~-E(' <0 -- E~-E1B ( ) PM(A,B)= 

EA_EB_(EA_E B) jikaOEEt-Ef,E~-E1B 2 I I 2 1 jikaEt-Ef>o Where[Et, E~] and [E~, E~] are 

expected interval (EI) A and B respectively.  

 

If IlM (A, B)~ a then it will be stated that A is greater or equal to jj at least in degree a 

represented as A~" B . If IlM (A, B) = 0.5 then the fuzzy numbers A and B are equal. For 

all pairs offuzzy numbers A and B, it is stated that A is equal to B in degree a, if there is 

relation then the equation is given below: ,.....,. ........,.....  

 

........ A~a12 B, A Sal2 B Equation (4) can be rewritten as follows: a - - a -~IlM(A,B)~I-- 2 2 

According to [16], decision vector x E~n is feasible in degree a if min i: 1"m{IlM(A,B)} = a.  

 

If fuzzy mathematical programming model with all parameters are triangular or Several 

methods and procedure aforementioned have been developed to solve fuzzy MOO 

problems. In general, we can classifY the scopes and the procedures solving fuzzy MOO 

problems involving: 1) the mathematic formulation models, 2) the converting method 

from fuzzy programming to deterministic programming, and 3) the using of 

optimization method both classical and evolutionary methods.  



 

This paper presents framework for solving fuzzy multi- objective using NSGA II 

approach. We present fuzzy (possibilistic) programming in multi-objective optimization 

model. NSGA II is employed to obtain optimal solutions set (Pareto front set). Before 

applying NSGA II technique, first, fuzzy programming was transformed into 

deterministic programming by converting the fuzzy parameters into crisp based on the 

fuzzy ranking method based [15].  

 

After the deterministic model was formed then the optimization is conducted using 

NSGA II technique at the different value of a- feasibility degrees. According to [16] the 

higher a feasibility degree is the worse the solution to be obtained. To solve this 

problem, feasibility degree and satisfaction degree of decision maker for each objective 

to be achieved should be balanced.  

 

The main contribution of this paper is to solve fuzzy multi- objective using NSGA II 

through incorporating several previous works. We incorporate the fuzzy ranking 

method, NSGA II [1], fuzzy decision making [17], and the final solution selection from 

Pareto front set developed from Jimenez approach [16] in which they employed it to 

solve fuzzy linear programming.  

 

For result evaluation, we compare our result with previous work using compromise 

programming in [10]. II. CONVERTING OF FUZZY PROGRAMMING FORMULATION INTO 

DETERMINISTIC PROGRAMMING Fuzzy programming is transformed into deterministic 

programming by changing the fuzzy numbers into crisp model based on Jimenez [15] 

approach.  

 

Fuzzy ranking method converts possibilistic programming into deterministic 

programming based on concept of mathematical expected interval (EI) and the expected 

value of fuzzy numbers (EV). Expected interval (EI) and the expected value of fuzzy 

numbers (EV) for triangular fuzzy numbers can be defined in equation 1 and fuzzy 

distribution is illustrated in Fig. I.  

 

EI(A) = [Et, E~] I I 1 I = [Jf~ (x)dx,Jg~ (x)dx] = [-CaP +a m ), _(am +aO)] o 0 2 2 EA EA P 2 

m 0 EV(A)=-' _+_, = a + a +a 2 4 Where Et and E~ are the lower and upper limit of fuzzy 

number interval A (EI( A », respectively. In the same way, the expected interval (EI) and 

the expected value (EV) for trapezoidal fuzzy numbers A can be determined in equation 

2 and illustrated in Fig. 2.  

 

trapezoidal fuzzy numbers then the equation Aix = Bi' equivalent to the following 

equation: a E A ,< _E 8, a (6) -< ' I <1-- i= 1+1, ...,m 2 - E;'< -E:'< +E~' ??? - 2' The given 



equation of Aix~ Bi is equivalent to: 543 978-1-5090-4629-4/16/$31.00@ 2016 IEEE 

ICACSIS 2016 If constraint is in the form of Ajx~ bi , the crisp equivalent equation can be 

written as follows: [(l-a)E~ +aE~]x~aE~; +(l-a)E:; , i=I, ....,1 (11) Where a is determined by 

the decision maker, which is the degree of the least fulfilled constraint, or a is the 

minimum acceptable feasibility degree of decision vector in which the value is between 

0 and 1. The higher a value, the higher feasibility degree of decision variable. IV.  

 

METHODS This study aims to solve fuzzy multi-objective problem using evolutionary 

approach. The steps required to solve the problems of fuzzy multi-objective 

optimization in this study include: 1. Determining mathematic formulation For numerical 

experiment, we solved simple formulation which is fuzzy multi-objective linear 

programming model objective function, the decision makers will be more satisfied if the 

result of the objective function is bigger, and vice versa.  

 

For minimization objective function, the decision makers will feel satisfied if the result of 

the objective function is smaller. In this case, the fuzzy membership function of the very 

satisfied decision-makers is 1, and that of very dissatisfied decision-makers is 0 in which 

it can be formulated in (12) and (13). For maximization objective function: 1 0, 

if~(u),.:;~(u)"';" f()-f( )"';" (f( » ,u, U iff,. (u)m;"":;f,.(u)":;f,.(u)"''' (12) 11; a = ~(u)"''' _~(u)m;,,' 

I, if~(u)~~(u)"''' For minimization objective function: 1 1, if~(u),.:;~(u)'"'" f (u)"''' - f (u) (f 

(»' , if f,. (u)"'''' ,.:; f,. (u),.:;f,.  

 

(u)"''' 11 ; u = (u)'"" -(u)'";", (13) 0, iff;(u)~f;(u)'"" Where J-L( ~ (a)) is the fuzzy 

membership function i on a- feasibility degree, f; (a) is the value the objective function i. 

f;(a)IDin and f;(a)IDaxare the value of the minimum and maximum limit ofthe objective 

function i, respectively. After satisfaction degree of each objective function on a- 

feasibility degree was obtained then fuzzy decision membership degree for each 

objective function is calculated using the following equation. ~f/~(aj)) =aj'~(~ (a)) (14) 

Where ~fJ(~(aj)) is the fuzzy membership objective function i for the jlh a-feasibility 

degree.  

 

~(~ (a)) is the satisfaction degree of decision makers for objective i for jlh a- feasibility 

degree. The fuzzy final decision for optimal solution by determining membership degree 

for each solution is intersection of all membership degrees of objective function i at the 

jlh solution. Determining the degree of membership intersection based on [17] can be 

written as (14). Il(~ (UJD)=UJ.Il(~ (uJ)n u j.ll(f, (u j)n ....n  

 

u j.Il(f; (u j) =Min(uj.qu;), uJ,(uJ, ...., uJ(uJ) (15) The final decision for the optimal solution is 

those having the maximum value of J.!(f, (aJD) or can be written as (16). Max ",(t; (aj)o) = 

Max(Min(aj.t; (a j), aJ, (a j), ... , art; (a j)) (16) (7) (9) x aD i=I, ....,1 (10) equivalent crisp a- 



am2 Fig. 2. Distribution of trapezoidal fuzzy for parameter A Ill.  

 

DECISION MAKING OF FUZZY MULTI-OBJECTIVE OPTIMIZATION After possibilistic 

programming was converted into deterministic programming then multi-objective 

optimization using NSGA II can be conducted to obtain Pareto fronts set based on the 

value of a-feasibility degree. The results of Pareto front set usually prove that the lower 

of a-feasibility degrees, the greater constraint model to be violated.  

 

The decision makers will not take high risks by violating the constraint. To make the best 

decision of the results of multi- objective optimization on the different value of a 

feasibility degree then the approach introduced by Jimenez et al. (2007) is performed.  

 

Besides using a-feasibility degree Jimenez approach also employs satisfaction degree of 

decision makers to obtain fuzzy membership degree for each solution of Pareto front. 

The decision makers are asked to state their satisfaction level of very satisfied and not 

satisfied about constraint of the results of the objective function. For the maximization 

EA;X _ EB; 2. I ;:::: a, i = 1,...,1 E~;x _E~;x +E~; -E~; Equation 6 can be rewritten to form 

equivalent crisp a- parametric model as follows: [( I_~)EA; +~EA;]X ~ ~EB; +(I_~)EB; i 

=1+ I, ....,  

 

m 2 2 2 1 2 2 2 l' (8) [ ~EA; +(I_~)EA;]x ~ (I_~)EB; +~EB; i = I+ 1, ...., m 2 2 2 1 2 2 2 1 ' 

Equation (7) can be rewritten to form parametric model as follows: [(I-a)E; +aE~]x;:::: aE; 

+(l-a)E(, 544 978-1-5090-4629-4/16/$31.00@ 2016 IEEE ICACSIS 2016 or called by 

possibilistic programming with fuzzy parameters in objective functions and constraints. 

2.  

 

Converting fuzzy programming formulation into deterministic programming This step 

aims to simplify employing NSGA II to solve fuzzy MOO problems and to yield objective 

function values in crisp numbers. Fuzzy linear programming model is converted into 

deterministic linear programming by changing the parameters of fuzzy numbers into 

crisp numbers based on fuzzy ranking method introduced by [15] and its application to 

solve linear programming by [16]. 3.  

 

Optimizing using genetic algorithm approach The multi-objective optimization is 

performed using non- dominated sorting genetic algorithm II (NSGA II) developed by [I]. 

Recently, NSGA II is most employed to solve MOO problems. Deb [1] developed NGSA II 

to tackle some drawbacks of NSGA [19] involving high complexity computation for 

identification of non- dominated sorting, inability surviving diversity, and Lack of 

specification of sharing parameter. The numeric experiment is conducted NSGA II using 

different a-feasibility degree which are between 0-1.  



 

The solution of fuzzy multi-objective approach optimization employs the approach of 

NSGA II using tool aids of MOEA Framework version 2.8 available in 

http://www.moeaframework.org/ and coded In Java Netbeans. 4. Determining the final 

decision After Pareto front was obtained based on the feasibility degree then the 

decision making is conducted to select the best final solution.  

 

The results of Pareto front set usually prove that the lower a-feasibility degrees, the 

greater model constraint is violated. To make the best decision of the optimization 

results of the objective functions on the different a-feasibility degree then the approach 

introduced by Jimenez et al. method [16] was conducted. V. NUMERJCAL EXPERIMENT 

A.  

 

Formulation For numerical experiment, we used simple formulation example in form 

multi-objective fuzzy linear programming in [10]. Max Fl= (40, 50,80)xl + 100x2+ 17.5x3 

(17) Max F2=(80, 90,120)xl + (50, 75, 1l0)x2+ 50X3 (18) Max F3=(10, 25,70)Xi + 100X2 + 

75x3 (19) s.t. (6, 12,14)xi + 17x2:S 1400 (20) 3xI + 9X2 + (3, 8, 1O)x3:S1000 (21) 10xI + 

(7,13, 15)x2+ 15x3:S1750 (22) (4,6, 8)xl + 16x2 :s 1325 (23) (7, 12, 19)x2 + 16x3 :s 900 

(24) 9.5xl+(3.5,9.5, 11.5)x2+4x3=(1060, 1075,1080) (25) 545 Equation (17) to (19) are 

objective functions in maximization and equation (20) to (21) are constraint functions in 

equality and inequality.  

 

Coefficients or parameters in parenthesis are fuzzy numbers which are defined as 

triangular fuzzy numbers. Before fuzzy multi-objective linear programming model above 

solved by NSGA II, first it transformed into deterministic programming using equation 

(1), objective functions can converted into deterministic programming as follows: Max 

FI= 40+2(50)+80 x + 100x 2 +17.5x 3 4 I M F2 80+2(90)+120 50+2.70+110 50 ax = 4 xI 

+ 4 x2 + x3 Max F3= 10+2(~5)+ 70 XI+ IOOx 2 + 75x3 Using equation (7) to (10), fuzzy 

parameters in the left and right-hand constraints converted into crisp numbers that 

form the equivalent auxiliary crisp model or deterministic programming, as follows: l ( 

6+12J (12+14Jj (I-a) -2- +a -2- x ,+17x,sI400 [ (3+8) (8+10)] h,+9x,+ (I-a)-2- +a-2- 

x,s1000 [ (7+13)(13+15)] IOx ,+(I-a)-2- +a-2- x,+15x,s1750 [(I-a)( 4;6)+a( 6;8) ]x I + 16x, S 

1325 [ (7+12)(12+19)] (I-a)-2- +a-2- x,+16x,s900 95x, +[(l-~ )(95~11}~e5;95) ]x, +4x, 

~~C075;1080)+(l_~f060;1075) 95x ,+[~(95~11}(1_~ )e5;95)]x, +4x, S(l_%J(1075;1080 )+ 

C%J(1060; 1075) B.  

 

Applying NSGA II to solve the fuzzy multi-objective optimization problems 

Multi-objective optimization is performed to obtain the optimum solution set or called 

Pareto front set. In this study, NSGA II technique was employed using u value from 0.1 

to 1 that was coded in Java Netbeans according to MOEA Framework version 2.8 which 



available in http://www.moeaframework.org/.  

 

NSGA II parameters was used including: the population size 200, the number of genes 3, 

the number of generation 10,000, employing Simulated Binary Crossover (SBX) 

algorithm with SBX parameter rate of 0.9 and distribution index of 20, and using 

polynomial mutation operator with mutation rate 0.1 and distribution index of20. The 

results of the numerical calculations of fuzzy multi- objective optimization using NSGA II 

method u value between 0.1 and I can be seen in Table I. 

978-1-5090-4629-4/16/$31.00@ 2016 IEEE ICACSIS 2016 (26) (27) if7149.80:<> f,(a):<> 

9049.80 iffJa):<>714980 iff,(a)~11316AI iff, (a j ) ~ 9058.52 iff,(a):<> 972688 iff 3 (a) ~ 

11047.79 I I, (f(a _ f,(a)-7149.80 11, ») - 9058.52-7149.80' 0, 1 1, (f (a = f,(a j )-9726.88 11 

2 j)) 11316Al -9726.88' if9726.88:<>f,(a j):<>11316AI 0, 1 1, (f ( f3 (a j )-7406.16 11 3 a») 

= 11047.79-7406.16' if740616:<>f J (a):<>11047.79 0, iff/a):<> 740616 (28) Using 

equation (26) to (28) then satisfaction degree for each objective can be calculated on 

different a values that can be seen in Table 2. For calculation example: In Table 1, let 

fl(O.I)= 9058.52 (for objective 1 (F I) at a=O.1) then according to equation (26) that is 

obtained ll(fl (O.1 »=1.  

 

For f l (0.2)= 8530.13 then obtained: Il(fl(0.2»=(8530.13-7149.80)/( 

9058.52-7149.80)=0.723 After satisfaction degree for each objective function at a- 

feasibility degree was obtained then the fuzzy decision membership degree is calculated 

for each objective function using equation 14. Suppose that the satisfaction degree of 

objective 1 at a = 0.1 and J.l(fl(a ol)) = 1 then the fuzzy decision membership - a F, F, F3 

X, X, X3 0.1 9058.52 10483.61 11047.79 33.54 63.79 47.72 0.2 8530.13 11316.41 8541.12 

70.83 41.46 27.91 0.3 8310.01 11256.06 8204.32 73.56 37.92 26.95 OA 8871.29 10018.14 

11007.71 27.34 65.30 47.85 0.5 7410.72 11155.76 7728.74 78.39 24.66 36.20 0.6 7403.13 

11100.98 7700.75 77.85 24.98 35.64 0.7 8271.71 10508.27 9631.75 48.92 48.32 42.80 0.8 

7149.80 11005.72 7406.16 79.73 21.40 35.66 0.9 7278.59 10988.75 9683.47 57.61 29.84 

64.37 I 8059.43 9726.88 9677.00 37.25 52.63 42.71 TABLE I.  

 

THE EVALUA nON OF FUZZY MULTI-OBJECTIVE PROBLEMS WITH DIFFERENT a 

FEASIBILITY DEGREE C Determining the final decision The lower a-feasibility degree 

value, the greater model constraint is violated. The decision makers will not take high 

risk by breaking the constraint. However, the greater a- feasibility degree value gives the 

better results.  

 

To make the best decision multi-objective optimization result on the different value of 

a-feasibility degree then the approach introduced by [16] is performed. Besides using 

a-feasibility degree, Jimenez approach also employs satisfaction degree of decision 

makers to obtain fuzzy membership degree for each - a Jl(f,(a» Jl(f2(a» Jl(t3(a» aj.Jl(f,(a» 



aj.Jl(f2(a» aj.Jl(f3(a» min aj.Jl(ti( aj)) 0.1 1.000 0.476 1.000 0.100 0.048 0.100 0.048 0.2 

0.723 1.000 0.312 0.145 0.200 0.062 0.062 0.3 0.608 0.962 0.219 0.182 0.289 0.066 0.066 

0.4 0.902 0.183 0.989 0.361 0.073 0.396 0.073 0.5 0.137 0.899 0.089 0.068 0.449 0.044 

0.044 0.6 0.133 0.864 0.081 0.080 0.519 0.049 0.049 0.7 0.588 0.492 0.611 0.411 0.344 

0.428 0.344 0.8 0.000 0.805 0.000 0.000 0.644 0.000 0.000 0.9 0.067 0.794 0.625 0.061 

0.714 0.563 0.061 1 0.477 0.000 0.624 0.477 0.000 0.624 0.000 TABLE 2.  

 

SATISFACTION DEGREE AND FUZZY DECISION MEMBERSHIP DEGREE AT a-FEASIBILITY 

DEGREE FOR OBJECTIVE I at a FEASIBILITY DEGREE solution of Pareto front. Suppose 

that the decision maker is very satisfied if the results of objective 1 are more than 

9058.52 and he/she does not want less than 7149.80. According equation (12), 

satisfaction degree of decision maker for the objective 1 can be stated in equation (26).  

 

Furthermore, in the same way, satisfaction degree of decision maker for the objective 2 

and 3 can be determined that stated in equation (27) and (28), respectively. 

degreeJ.lo(fJaoJ) =0.1(1) =0.1. In the same way, fuzzy decision membership degree for 

each objective at satisfaction degree a can be determined as shown in Table 2.  

 

In Table 2, we can see that the best solution is at 0.7- feasibility degree because it has 

the highest final decision membership degree, which is 0.344. If the decision makers are 

not satisfied with the final solution, the decision makers can alter the fuzzy boundary of 

objectives or select a-feasibility degree. In Table 1 can be seen that the best solution is 

at 0.7- feasibility degree in which the value of decision variable XI, 546 

978-1-5090-4629-4/16/$31.00@ 2016 IEEE ICACSIS 2016 X2, and X3, are 48.92, 48.32, 

42.80, respectively. Those decision variable values result 8271.71, 10508.27, 9631.75 for 

the value of objective function 1,2, and 3, respectively. TABLE 3.  

 

COMPARJSON OF THE RESULTS OF NSGA" AND COMPROMISE PROGRAMMING FOR 

SOLVING FUZZY MOO PROBLEMS Compromise programming NSGA II results results for 

13=0.8 [10] (at 0.7- feasibility LI Loo degree) Objective I [5420.14, [5402.38, 8271.71 

7232.07] 7249.83] Objective 2 [10204.34, [10210.65, 10508.27 12207.791 12231.791 

Objective 3 [5244.91, [5052.63, 9631.75 7962,80] 7823.80] Xl 90.6 92.37 48.92 X2 6.38 

5.79 48.32 X3 40.28 38.01 42.8  

 

For evaluation, we compare our results with the previous work using compromise 

programming in [10]. We can see in Table 3 that the results of comparison between 

NSGA II approach and compromise programming. The results of compromise 

programming are in expected intervals of fuzzy numbers that need further stages to 

obtain exact numbers.  

 



NSGA II approach yields optimal solution in crisp numbers and more optimal 

(maximum) solution at objective 1 and 2 than that of compromise programming. VI. 

CONCLUSIONS This paper presents fuzzy multi-objective linear programming or also 

called as possibilistic programming model solving by NSGA II. First, possibilistic 

programming formulation is converted into deterministic programming by changing the 

parameters of fuzzy numbers into crisp.  

 

After deterministic programming was formed then NSGA II technique is applied to 

obtain a set of Pareto front with a- feasibility degrees between 0.1 to 1. Pareto front set 

obtained is a collection of optimal decision for the issues discussed. The final optimal 

solution is the intersection between a-feasibility degree and satisfaction degree of the 

decision makers that generates fuzzy membership degree.  

 

The final optimal fuzzy solution is the one having the highest fuzzy membership degree. 

The comparison of optimization results shows that NSGA II approach yields more 

maximum for two objectives than that of compromising programming. In this paper, we 

imply simple formulation for numerical experiment.  

 

For next study, this framework can be implied to solve fuzzy multi-objective 

optimization problems for complex formulations and models. ACKNOWLEDGMENT 
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