TEE 843 – Sistem Telekomunikasi

10. Komunikasi Data

Muhammad Daud Nurdin

syechdaud@yahoo.com

Jurusan Teknik Elektro FT-Unimal Lhokseumawe, 2016

DATA COMMUNICATION (Basics of data communication, OSI layers.)

K.K.DHUPAR SDE (NP-II) ALTTC

ALTTC/NP/KKD/Data Communication

Data Communications History

- 1838: Samuel Morse & Alfred Veil Invent Morse Code Telegraph System
- 1876: Alexander Graham Bell invented Telephone
- 1910: Howard Krum developed Start/Stop Synchronisation

History of Computing

- 1930: Development of ASCII
 Transmission Code
- 1945: Allied Governments develop the First Large Computer
- 1950: IBM releases its first computer IBM 710
- 1960: IBM releases the First Commercial Computer IBM 360

Main Contributors of Data Comm.

- Transmission Technology
- Packet Switching Technology
- Internet
 - 1967: ARPANET by Advanced Research Project Agency (ARPA) of U.S.
 - 1975: TCP/IP protocol
- LAN Technology
 - DIX-Ethernet & IEEE 802 Networks
- WAN
 - 1976: ISO releases HDLC & CCITT releases X.25 (PSPDN)

Various Networks

- Home Area Network (HAN)
- Local Area Network (LAN)
- Metropolitan Area Network (MAN)
- Wide Area Network (WAN)
- Global Area Network (GAN)

Voice & Data

- In 70's & 80's main thrust in Wide Area Networking (WAN) was to put *Data on Voice Circuits* using Modem & on ISDN lines
- In 90's the trend is reverse. Major Efforts were on putting *Voice Over Data* using:
 - -Voice Over Frame Relay
 - -Voice Over Internet
 - -Voice Over ATM etc

What is Data Communications?

 Exchange of digital information between two digital devices is data communication

Networking

- Networking is the convenient way of making information accessible to anyone, anytime & anywhere.
- Evolution of Networking
 - Computers handling Large Data were developed
 - viz. text, graphics, animation, sound & video
 - Improvements in Personal Computers
 - Small, powerful & cheap user friendly systems.
 - Emergence of Computer Networks
 - Distributed, Intelligent, High-speed LAN/WAN

What is Interoperability ?

 The Capability of two or more computers of different vendors to transmit & receive data and to carry out processes as expected by the user is called Interoperability.

Requirements of Data Communications

- At least Two Devices ready to communicate
- A Transmission Medium
- A set of Rules & Procedure for proper communication (Protocol)
- Standard Data Representation
- Transmission of bits either Serial or Parallel
- Bit synchronisation using Start/stop bits in case of Asynchronous Transmission
- In Synchronous Transmission the agreed pattern of Flag
- Signal encoding rules viz. NRZ or RZ
- And other higher layer protocol

Data Representations

- A group of bits are used to represent a character/number/ special symbol/Control Characters
- 5-bit code can represent 32 symbols (2⁵=32)
- 7-bit code can represent 128 symbols (2⁷=128) &
- 8-bit code can represent 256 symbols (2⁸=256)

Code Set

- A code set is the set of codes representing the symbols
- Very common code sets are :
 - ASCII : this is ANSI's 7-bit American
 Standard Code for Information Interchange
 - ASCII code(7-bit) is often used with an 8th bit known as parity bit used for detecting errors during Data Transmission
 - Parity bit is added to the Most Significant bit (MSB)
 - *EBCDIC* : this is IBM's 8-bit Extended
 Binary Coded Decimal Interchange Code

ASCII Code

- ASCII is defined in ANSI X3.4
 - Corresponding CCITT recommendation is IA5 (International Alphabet No.5)
 - ISO specification is ISO 646
- Total 128 codes
 - 96 codes are graphic symbols (in Col. 2~7).
 - 94 codes are printable
 - And 2 codes viz. SPACE & DEL characters are non printable
 - 32 codes control symbols (Col. 0 & 1)
 - All are non printable

EBCDIC Code

- It is an 8-bit code with 256 symbols
- No parity bit for error checking
- The graphic symbols are almost same as ASCII
- Several differences in Control characters as compared to ASCII

Baudot Teletype code

- It is a 5-bit code also known as ITA2 (International Telegraph Alphabet No. 2).
- 32 codes are possible. With the help of Letter shift & Figure shift key same code is used to represent two symbols.
- Maximum symbols in this code are 58
- Used in Telegraphy/Telex

Data Transmission

- Data Transmission means movement of the bits over a transmission medium connecting two devices
- Two types of Data Transmission are:
 - Parallel Transmission
 - -Serial Transmission

Parallel Transmission

- In this all the bits of a *byte* are transmitted simultaneously on separate wires.
- Practicable if two devices are close to each other e.g. Computer to Printer, Communication within the Computer

ALTTC/NP/KKD/Data Communication

Serial Transmission

- Bits are transmitted one after the other
- Usually the Least Significant Bit (LSB) has been transmitted first
- Serial Transmission requires only one circuit interconnecting two devices
- Suitable for Transmission over Long distance

What is a Bit Rate ?

- Number of bits that can be transmitted in 1 second
- If t_p is the duration of the bit then the Bit rate $R = 1/t_p$
- Bit duration need not be same as the pulse duration

Receiving Data bits

- Received Signal is never same as transmitted
- Clock signal samples & regenerates the original bits as it was transmitted
- Received Signal should be sampled at right instant. Otherwise it will cause bit error

ALTTC/NP/KKD/Data Communication

Modes of Transmission

- Two methods for Timing control for receiving bits
 - Asynchronous Transmission
 - Sending end commences the Transmission of bits at any instant of time
 - No time relation between the consecutive bits
 - During idle condition Signal '1' is transmitted
 - "Start bit" before the byte and "Stop bit" at the end of the byte for Start/Stop synchronisation
 - Synchronous Transmission
 - is carried out under the control of the timing source
 - No Start/Stop bits
 - Continuous block of Data are encapsulated with Header & Trailer along with Flags

Start- Stop Synchronisation

Note:

Start bit is always 1 bit duration Start bit is always equal to '0' Stop bit may be 1 or 1.5 or 2 bits duration Stop bit is always equal to '1' Idle period time is arbitrary (variable)

Synchronous Transmission

- Flag identifies the Start and End of the block
- Receiver first detects the Flag (usually a fixed pattern) and then detects the other bits/bytes in the data field
- Complete Block along with the Flags is called a FRAME

Signal Encoding

- For transmission of bits into electrical signals for two binary states simple +ve and -ve voltages are not sufficient.
- Sufficient Signal transition should be present to recover the clock properly at the receiving end
- Bandwidth of the signal should match with transmission medium
- Several ways to represent the bits as electrical signals
- Two broad classes are:
 - Non-Return to Zero (NRZ) and
 - Return to Zero (RZ)

Non Return to Zero (NRZ) Codes

ALTTC/NP/KKD/Data Communication

Return to Zero (RZ) Codes

- If there is continuous string of '0's or '1's in NRZ code it is very difficult to recover the clock signal
- Hence Return to Zero code (RZ) was implemented
- Clock can be extracted from the Return to Zero code by the receiver using lot of transitions
- RZ signals are the combination of "NRZ-L Signal + Clock Signal"
- Various RZ codes are:
 - Manchester Code
 - Bi-phase-M Code
 - Bi-phase-S Code
 - Differential Manchester Code

Return to Zero (RZ) Codes

Data Transmission & Data Communication

- Data Transmission deals with:
 - the physical movement of information.
 - polarity, synchronisation, clock, electrical characteristics, modulation, demodulation etc.
- Data Communication deals with:
 - Meaningful exchange of information between the communication entities
 - e.g. dialogue discipline, interpretation of messages, acknowledgement etc.

Synchronous & Asynchronous Communication

- Synchronous Communication is:
 - more disciplined information exchange
 - entities send a message only when it is permitted to do so
- Asynchronous Communication is:
 - less disciplined
 - can send a message whenever it wishes to

Directional Capabilities for Data Exchange

- Three possibilities are:
 - Transfer in one direction only
 - Transfer in either direction but one at a time
 - Transfer in both the direction simultaneously

Direction Capability	Transmission	Communication				
One Direction only	Simplex (SX)	One Way (OW)				
One direction at a time	Half Duplex (HDX)	Two-Way Alternate (TWA)				
Both directions at the same time	Full Duplex (FDX)	Two-Way Simultaneous (TWS)				

OSI Layers

- The OSI model is built of seven ordered layers:
 - -Layer-1: Physical
 - -Layer-2: Data Link
 - -Layer-3: Network
 - -Layer-4: Transport
 - -Layer-5: Session
 - -Layer-6: Presentation
 - -Layer-7: Application

OSI Layers

- The seven layers can be thought of as belonging to three sub groups
 - Network Support Layers (Layers 1-3)
 - Deal with the physical aspects of moving data from one device to another
 - User Support Layers (Layers 5-7)
 - Allow interoperability among unrelated software systems
 - Layer-4 ensures end to end reliable data transmission

Hierarchical communication.

- Within a single machine, each layer calls upon the services of the layer just below it
- The passing of data and network information is made possible by an interface between each pair of adjacent layers
- The messages exchanged between the adjacent layers, to obtain the required services, are called Interface Control Information (ICI)

Data Units

 (N)-PDU is the combination of (N)-PCI and (N)-SDU

Layer-1(Physical)

- First of three network support layers
- Concerned with physical transmission of data bits and ensures that a bit entering at one end of the transmission media reaches the other end
- Deals with the mechanical and electrical specifications of the interface and transmission medium e.g. Optical, coax, RF, twisted pair etc.
 - Defines the type of encoding i.e. how 0s and 1s are changed to signals
 - Defines data rate / transmission rate i.e. defines the duration of a bit

A

Ρ

S

Τ

Ν

D

Layer-1(Physical)

- Responsible for synchronisation of sender and the receiver clocks
- Concerned with the connection of the devices to the medium
 - Point-to-point configuration
 - Multipoint configuration
- Physical topology
 - -Mesh; Star; Ring; Bus
- Transmission Mode

 Simplex; Half-Duplex; Full-Duplex

A

Ρ

S

Т

Ν

D

Layer-1(Physical)

Layer-2 (Data Link)

- Second of three network support layers
- Divides the bit stream received from network layer into manageable data units called frames
- Transforms the physical layer to a reliable link by adding mechanism to detect and retransmit damaged frames
 - Responsible for physical addressing of the devices
 - Responsible for link-by-link flow control and error free delivery of data
 - Responsible for Media Access Control

A

Р

S

T

Ν

D

Layer-2 (Data Link)

Layer-3 (Network)

- Last of the three network support layers
- Responsible for Source-to-Destination delivery of individual packets across multiple links
- If two systems are connected to the same link there is usually no need for a network layer
- Responsible for the unique logical addressing of the sender and the receiver
- Responsible for routing of packets

A

Ρ

S

Τ

Ν

D

Layer-3(Network)

Layer-4 (Transport)

- Responsible for Source-to-Destination delivery of the entire message
- Uses service-point address (port address) for end-to-end delivery
- Network layer gets each packet to correct computer, transport layer gets the entire message to the correct process
- Responsible for segmenting a message into transmittable segments
- At the destination the message is correctly reassembled

A

Ρ

S

T

Ν

D

Segmentation and Reassembly

ALTTC/NP/KKD/Data Communication

Layer-4 (Transport)

- Utilises network layer to ensure reliable, sequenced data exchange
- Transport layer can be connectionless or connection oriented
 - A connectionless transport layer treats each segment as an independent packet
 - A connection oriented transport layer makes a connection with the transport layer at the destination machine before delivering the packets
 - After all the data is transmitted, the connection is terminated

A

Ρ

S

T

Ν

D

Layer-4 (Transport)

- Responsible for end-to-end flow control of data
- Responsible for end-to-end error control of data
 - Error correction is usually achieved through retransmission

A

Ρ

S

T

Ν

D

Layer-5(Session)

A

Ρ

S

Τ

Ν

D

- First of the three user support layers
- It is the network dialog controller
- It establishes, maintains, and synchronises the interaction between communicating systems
- It allows the communication between two processes to take place either in half-duplex or full-duplex
- Allows a process to add checkpoints (synchronisation points) into a stream of data

Layer-5(Session)

Layer-6 (Presentation)

- Second of the three user support layers
- Concerned with the syntax and semantics of the information exchanged between two systems
- At sender end, changes the information from sender dependent format into a common format
- At the receiving end, changes the information from common format into its receiver dependent format

A

Ρ

S

Τ

Ν

D

Layer-6 (Presentation)

- Responsible for encryption and decryption of sensitive information
- Responsible for data compression of the data to be transmitted

A

Ρ

S

Т

Ν

D

Layer-6(Presentation)

ALTTC/NP/KKD/Data Communication

Layer-7(Application)

- Top of the three user support layers
- Enables the user, human or software, to access the network
- It provides user interfaces and support for services e.g. electronic mail, remote file access and transfer, shared database management and other types of distributed information services

A

Ρ

S

T

Ν

D

Layer-7(Application)

Specific services provided by the application layer include Network Virtual terminal A Software version of a physical terminal Allows user to log on to a remote host Ρ File Transfer, Access and Management S Allows user to access, retrieve, manage and control files in a remote computer Т Mail Services Provides basis for e-mail forwarding and Ν storage D **Directory Services** Provides distributed database sources and Ρ access for global information about various services

An exchange using OSI model

ALTTC/NP/KKD/Data Communication

An exchange using OSI model

Summary of OSI Layers Functions

ALTTC/NP/KKD/Data Communication

Thank You

Any Questions ?

ALTTC/NP/KKD/Data Communication

TEE 843 – Sistem Telekomunikasi

10. Komunikasi Data (tambahan)

Muhammad Daud Nurdin

syechdaud@yahoo.com

Jurusan Teknik Elektro FT-Unimal Lhokseumawe, 2016

Kode Morse

A • —	J	•	s	•••			
в —•••	к	-•-	т	-			
c _•-•	L	• – • •	U	••-			
D — • •	м		v	•••-			
Ε •	Ν	-•	w	•			
F •• — •	ο		х				
G•	Ρ	• •	Y				
н ••••	Q	•_	z				
I • •	R	• – •					
	_		_				
1 •		6 -	••				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
5 • • • •	•	0 —					

2

Kode ASCII

Decimal - Binary - Octal - Hex – ASCII Conversion Chart

Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII	Decimal	Binary	Octal	Hex	ASCII
0	00000000	000	00	NUL	32	00100000	040	20	SP	64	01000000	100	40	@	96	01100000	140	60	
1	00000001	001	01	SOH	33	00100001	041	21	1	65	01000001	101	41	A	97	01100001	141	61	а
2	00000010	002	02	STX	34	00100010	042	22	*	66	01000010	102	42	В	98	01100010	142	62	b
3	00000011	003	03	ETX	35	00100011	043	23	#	67	01000011	103	43	C	99	01100011	143	63	С
4	00000100	004	04	EOT	36	00100100	044	24	\$	68	01000100	104	44	D	100	01100100	144	64	d
5	00000101	005	05	ENQ	37	00100101	045	25	%	69	01000101	105	45	E	101	01100101	145	65	е
6	00000110	006	06	ACK	38	00100110	046	26	&	70	01000110	106	46	F	102	01100110	146	66	f
7	00000111	007	07	BEL	39	00100111	047	27	1	71	01000111	107	47	G	103	01100111	147	67	g
8	00001000	010	08	BS	40	00101000	050	28	(72	01001000	110	48	н	104	01101000	150	68	h
9	00001001	011	09	HT	41	00101001	051	29)	73	01001001	111	49	L	105	01101001	151	69	i
10	00001010	012	0A	LF	42	00101010	052	2A	*	74	01001010	112	4A	J	106	01101010	152	6A	j
11	00001011	013	0B	VT	43	00101011	053	2B	+	75	01001011	113	4B	K	107	01101011	153	6B	k
12	00001100	014	0C	FF	44	00101100	054	2C	,	76	01001100	114	4C	L	108	01101100	154	6C	L
13	00001101	015	0D	CR	45	00101101	055	2D	-	77	01001101	115	4D	M	109	01101101	155	6D	m
14	00001110	016	0E	SO	46	00101110	056	2E		78	01001110	116	4E	N	110	01101110	156	6E	n
15	00001111	017	0F	SI	47	00101111	057	2F	1	79	01001111	117	4F	0	111	01101111	157	6F	0
16	00010000	020	10	DLE	48	00110000	060	30	0	80	01010000	120	50	P	112	01110000	160	70	p
17	00010001	021	11	DC1	49	00110001	061	31	1	81	01010001	121	51	Q	113	01110001	161	71	q
18	00010010	022	12	DC2	50	00110010	062	32	2	82	01010010	122	52	R	114	01110010	162	72	r
19	00010011	023	13	DC3	51	00110011	063	33	3	83	01010011	123	53	S	115	01110011	163	73	s
20	00010100	024	14	DC4	52	00110100	064	34	4	84	01010100	124	54	Т	116	01110100	164	74	t
21	00010101	025	15	NAK	53	00110101	065	35	5	85	01010101	125	55	U	117	01110101	165	75	u
22	00010110	026	16	SYN	54	00110110	066	36	6	86	01010110	126	56	V	118	01110110	166	76	V
23	00010111	027	17	ETB	55	00110111	067	37	7	87	01010111	127	57	W	119	01110111	167	77	w
24	00011000	030	18	CAN	56	00111000	070	38	8	88	01011000	130	58	Х	120	01111000	170	78	x
25	00011001	031	19	EM	57	00111001	071	39	9	89	01011001	131	59	Y	121	01111001	171	79	У
26	00011010	032	1A	SUB	58	00111010	072	3A	:	90	01011010	132	5A	Z	122	01111010	172	7A	z
27	00011011	033	1B	ESC	59	00111011	073	3B	;	91	01011011	133	5B]	123	01111011	173	7B	{
28	00011100	034	1C	FS	60	00111100	074	3C	<	92	01011100	134	5C	1	124	01111100	174	7C	1
29	00011101	035	1D	GS	61	00111101	075	3D	=	93	01011101	135	5D	1	125	01111101	175	7D	}
30	00011110	036	1E	RS	62	00111110	076	3E	>	94	01011110	136	5E	٨	126	01111110	176	7E	~
31	00011111	037	1F	US	63	00111111	077	3F	?	95	01011111	137	5F	_	127	01111111	177	7F	DEL

Catatan: Bit pertama adalah bit paritas, tidak mesti 0. Ini akan bergantung pada kode paritas yg digunakan; *Even Parity Check* ataupun *Old Parity Check*.

ASCII Conversion Chart.doc Copyright © 2008, 2012 Donald Weiman 22 March 2012

Open System Interconnection (OSI) Reference Model

Model referensi OSI

• Skenario komunikasi dan fungsi utama masing-masing layer

OSI vs TCP/IP

Figure 6.11 The TCP/IP stack and OSI reference model.

Example Internet connection

PR-10

- 1. Compare parallel and serial data transmission principles and applications.
- 2. Explain what is meant by asynchronous and synchronous data transmission.
- 3. ASCII strings "A" [1000001] and "2" [1000110] (first bit on the left) are sent and a parity bit for even parity is added in the end of each character. What are the transmitted 8-bit strings?
- 4. Compare circuit-switched service and packetswitched networks. What are their advantages and disadvantages? List three examples of both circuitand packet-switched networks.

PR-10 (lanjutan)

- 5. What does protocol mean in data communications? Give some examples of protocols. Why do we use a layered protocol structure in data communications?
- 6. Explain the basic principle and structure of the OSI reference model. Explain also the functions of the layers of OSI reference model, respectively.
- 7. Compare the TCP/IP stack with the OSI reference model.

Sekian, terima kasih, semoga berkah.

Ada pertanyaan?

Softcopy bahan kuliah tersedia di <u>http://adf.ly/1Yc3US</u> dan <u>http://repository.unimal.ac.id</u>