Analisa Sifat Fisika-Kimia Bahan Bakar Campuran (Biodiesel dan Solar)
Azhari

Analisis Pengaruh Pengasutan Motor Induksi Terhadap Pembangkit (Generator)
PLTMh
Maimun, Fauzan

Identifikasi Gender Melalui Suara Menggunakan Learning Vektor Quantization (LVQ)
Fadlisyah, Mukti Qamal

Identifikasi Gender Melalui Wajah Menggunakan Template Matching
Muhammad Sadli

Sistem Pendukung Keputusan Penentuan Pemilihan Kelayakan Lokasi Perumahan Menggunakan Metode Vikor
Eva Darnila

Sistem Pendukung Keputusan Penentuan Tempat Pembuangan Akhir Menggunakan Metode Entropy dan SAW
Mutamimul Ula

Implementasi Sistem Informasi Perpustakaan di SMKN 1 Lhokseumawe
Muhathir, M. Ludhi Caesar, Mutamimul Ula

Aplikasi Sistem Informasi Kerja Praktek dan Tugas Akhir Prodi Teknik Informatika Berbasis Web
Nuradin, Fadhel Munthoha

Audit IT Governance pada Sistem Informasi E-Learning Menggunakan Model Cobit 4.1
Muthmainnah

Sistem pendukung Keputusan Penentuan Mutasi Pegawai menggunakan metode Multi Factor Evaluation Process (MFEP)
Defi Irwansyah

Pemodelan Trafik Video MPEG
Anita Fauziah, Musyidah
Jurnal Energi Elektrik mempublikasikan hasil penelitian ilmiah dibidang energi, baik penelitian dasar, perancangan, pengembangan dan studi mengenai pengembangan bidang energi. Jurnal energi ini akan terbit secara berkala 2 kali dalam satu tahun (Oktober dan April)

Dewan Redaksi

Penanggung Jawab:
Ketua Jurusan Teknik Elektro

Pemimpin Redaksi
Andik Bintoro, S.T., M.Eng.

Anggota Redaksi
Munirul Ula, S.T., M.Eng.
Maryana, S.Si., M.Si.

Penyunting Ahli
Prof. Dr. Ir. T. Haryono, M.Sc.
Ir. Tumiran, M.Eng, Ph.D
Dr. Ir. Rizal Munadi, M.M., M.T.
Dr. Azhari, S.T., M.Sc.
Muhammad Ikhwanus, S.T., M.Eng.
Ezwarsyah, S.T., M.T.

Redaksi Pelaksana
Dahlilana, A. Ma
Sufrani, S.P.
Abdul Hadi, S.T.

Penerbit
Jurusan Teknik Elektro
Fakultas Teknik
Universitas Malikussaleh
Jl. UNIMAL Cdt Tgk Nic Rejeki
Kecamatan Muara Dua
Aceh Utara Po Box 141

Pengantar
DAFTAR ISI

Analisis Sifat Fisika-Kimia Bahan Bakar Campuran (Biodiesel dan Solar)
Azhari 1

Analisis Pengaruh Pengasutan Motor Induksi Terhadap Pembangkit
(Generator) PLTMh
Maimun, Fauzan 5

Identifikasi Gender Melalui Suara Menggunakan Learning Vektor Quantization
(LVQ)
Fadlysyah, Muki Qamal 15

Identifikasi Gender Melalui Wajah Menggunakan Template Matching
Muhammad Sadil 18

Sistem Pendukung Keputusan Penentuan Pemilihan Kelayakan Lokasi Perumahan
Menggunakan Metode Vikor
Eva Damila 23

Sistem Pendukung Keputusan Penentuan Tempat Pembuangan Akhir Menggunakan
Metode Entropy dan SAW
Mutamimul Ula 28

Implementasi Sistem Informasi Perpustakaan di SMKN 1 Lhokseumawe
Muhadhir, M Ludhi Caesar, Mutamimul Ula 33

Aplikasi Sistem Informasi Kerja Praktek dan Tugas Akhir Prodi Teknik Informatika
Berdasarkan Web
Nurcin, Amin Munthoha 38

Audit IT Governance pada Sistem Informasi E-Learning
Menggunakan Model Cobit 4.1
Muthmainnah 43

Sistem pendukung Keputusan Penentuan Mutasi Pegawai menggunakan
metode Multi Factor Evaluation Process (MFEP)
Defi Irwansyah 47

Pemodelan Trafik Video MPEG
Anita Fauziah, Munyidah 51
Analisa Sifat Fisika-Kimia Bahan Bakar Campuran (Biodiesel dan Solar)

Azhari

Jurusan Teknik Kimia, Fakultas Teknik, Universitas Mochtar Kusuma, Jalan Pamulang 24431, Indonesia

Keywords—Sifat fisika-kimia, biodiesel, solar

I. PENDAHULUAN

Bahan bakar berbasis minyak bumi merupakan jenis bahan bakar yang sangat penting baik pada mesin maupun sektor dilerkangan megah-megah produksi manufaktur. Akan tetapi, dikarenakan persediaan minyak bumi menunjukkan laju penurunan secara signifikan, sehingga keadaan tersebut telah menimbulkan banyak bahan bakar di pasaran global. Disamping itu, pengurangan dari gas hasil pembakaran mesin kendaraan dan industri (karbon emisi) terhadap lingkungan yang semakin menunjukkan dampak pencemaran udara dan gas rumah karbon serta penurunan global. Hal ini telah mendorong berbagai kebijakan seperti peraturan pemerintah, kebijakan, dan pengaturan untuk mendapatkan bahan bakar pengganti (alternative fuel) serta ramah lingkungan (environmentally friendly) [1].

Minyak nabati (khususnya minyak yang tak dapat ditekan), namun hewar dan senyawa minyak nabati merupakan bahan baku yang banyak dipakai dalam memproduksi bahan bakar alternatif (biodiesel). Keunggulan bahan bakar tersebut adalah mudah didapat, tidak mengganggu sinyal sosiologi dan manis diproduksi secara terus-menerus [2]. Dari aspek teknologi produksi, pada umumnya metode reaksi kimia transesternifikasi digunakan untuk memproduksi biodiesel dari berbagai jenis bahan baku. Selain reaksi transesternifikasi, ada beberapa teknik lain digunakan dalam memproduksi biodiesel seperti pelarutan, super kritik, emulsifikasi, dan bireksional. Akan tetapi, asam asetat tersebut merentumkan biaya produksi yang sangat memungkinkan diberikan dengan teknik reaksi transesternifikasi [3].

Beberapa keuntungan biodiesel disamping sebagai bahan bakar terbarukan, karena dapat terbuka kembali sehingga tidak mengganggu gas karbon monoksida, tidak mengganggu sinyal sulfur, dapat diperbarui (renewable) dan tidak meningkatkan asam gas rumah karbon di atmosfer [4]. Akan tetapi, beberapa sifat fisika-kimia biodiesel seperti viskositas, kritik asam dan titik lunak masih tinggi dibandingkan dengan bahan bakar solar yang berbasis minyak bumi. Bahan bakar dengan viskositas yang tinggi akan menyebabkan atomisasi, penetrasi air dan partikel yang rendah [5]. Hal ini menumpuk banyak masalah pada bahan bakar dengan keadaan yang dianggap dalam kawasan yang berlindung [6]. Atomisasi yang rendah akan menyebabkan kekeringan pada suatu injektor bahan bakar, baik dalam mesin, sehingga meningkatkan deposit mesin, asap serta emisi [7]. Untuk meningkatkan efisiensi atomisasi bahan bakar serta menghindari terjadinya deposit dan emisi, maka proses campuran (blending) bahan bakar antara biodiesel dengan solar mampu mengatasi masalah tersebut.

Tujuan utama penelitian ini adalah mengenai properti bahan bakar campuran seperti densitas, viskositas, baku asam, baku penyubahan, kadar air, titik nyala, bilangan setan, dan titik uap dari beberapa formula campuran (blending) bahan bakar antara biodiesel dan solar.
II. ALAT DAN BAHAN

Adapun bahan-bahan yang digunakan dalam penelitian ini adalah biodiesel limbah minyak goreng, solar (D2), kalsium hidroksida, iso propanol, penutup, dan aquedest. Sedangkan peralatan analisis adalah pikenometer, buret, moistare analyzer, flash point tester, dan pour point tester. Tabel 1 menampilkan sifat fisika-kinem bahan bakar solar (D2).

III. METODOLOGI

Proses blending (B) bahan bakar solar dengan biodiesel dalam penelitian ini dilakukan secara volume ratio technique, dimana beberapa formula diperolehkan seperti B5, B10, dan B15. Masing-masing formula terdiri dari variasi perbandingan persentase volume biodiesel dan bahan bakar solar (D2), dimana B5 berarti campuran yang terdiri dari 5% volume biodiesel + 95% volume solar, B10 adalah campuran yang terdiri dari 10% volume biodiesel + 90% volume solar, sedangkan B15 adalah campuran 15% volume biodiesel + 85% volume solar. Sebelum analisis sifat fisika-kinem dilakukan terhadap masing-masing campuran yang telah dihasilkan. Maka semua formula (B5, B10, dan B15) pada diadak secara merata untuk menempati homogenitas campuran yang bagus.

<table>
<thead>
<tr>
<th>Tabel 1: Sifat fisika-kinem bahan bakar solar (D2)*</th>
<th>Satuan</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denitasas</td>
<td>gram/l</td>
<td>0,8288</td>
</tr>
<tr>
<td>Viskositas</td>
<td>mm2/detik</td>
<td>2,88</td>
</tr>
<tr>
<td>Kadar air</td>
<td>% volume</td>
<td>0,010</td>
</tr>
<tr>
<td>Titr nyala</td>
<td>°C</td>
<td>79</td>
</tr>
<tr>
<td>Titr manas</td>
<td>°C</td>
<td>-3</td>
</tr>
</tbody>
</table>

IV. HASIL DAN DISKUSI

4.1 Denitasas bahan bakar campuran

Denitasas bahan bakar hasil pencampuran biodiesel dengan bahan bakar solar (D2) menunjukkan penurunan yang signifikan dibandingkan dengan densitas biodiesel dalam konsentrasi nuni yaitu 0,87 gr/cm3. Sebaliknya, bila dibandingkan dengan densitas bahan bakar solar (D2), nilai densitas bahan bakar hasil campuran dalam berbagai formula seperti B5, B10, dan B15 menunjukkan kenaikan secara proporsional (Gambar 1). Kesalahan pada (2014) [8] melaporkan bahwa dalam suatu campuran bahan baku berbasis biodiesel dan solar, densitas bahan bakar meningkat dengan meningkatnya konsentrasi biodiesel dalam campuran. Dari hasil analisa diperoleh nilai densitas untuk masing-masing formula campuran B5, B10 dan B15 yaitu antara 0,84 hingga 0,85 gr/cm3.

4.2 Viskositas bahan bakar campuran

Menteri Das et al. (2009) [9], selama proses oksidasi, viskositas biodiesel cenderung mengalami kenaikan karena senyawa-senyawa yang teroksidasi membentuk sedimen dan komponen yang melarut (gigi). Oleh karena itu, melalui proses pencampuran antara biodiesel dengan bahan bakar solar, perhitungan sedimen serta komponen pelaksana dapat dikurangi secara signifikant.

4.3 Titik nyala bahan bakar campuran

Titik nyala sangat erat hubungannya dengan volatilitas suatu komponen dalam suatu campuran. Bhantarulna nilai volatilitas komponen dengan titik nyala suatu bahan bakar memililk hubungan yang terbalik. Semakin tinggi persentase kedu komponen volatilitas dalam suatu campuran maka akan menyebabkan terjadinya penurunan nilai titik nyala campuran tersebut. Tujuan ini, tentu menemukan nilai titik nyala suatu bahan bakar adalah untuk

ISSN 2096 - 5635
mengetahui kadar komponen senyawa volatilis yang terkandung dalam suatu campuran bahan bakar. Permasalahan hasil analisa nilai titik nyala maka dapat ditentukan langkah-langkah berikutnya untuk tujuan penyimpanan dan mobilitas bahan bakar tersebut ke suatu lokasi tertentu.

Gambar 3: Titik nyala bahan bakar campuran pada berbagai formul

4.4 Sifat fisika-kinim bahan bakar campuran

Hasil analisa sifat fisika-kinim bahan bakar campuran antara biodiesel dengan bahan bakar solar (D2) dalam berbagai formula ditunjukkan dalam Tabel 2. Semua sifat fisika-kinim bahan bakar B5, B10, dan B15 seperti deniscen, viskositas, bilangan asam, bilangan penyebutan, kadar air, titik nyala, bilangan setan, dan titik uang memenuhi nilai standard ASTM D 6751.

Setelah sifat fisika-kinim bilangan asam mengalami penurunan pada setiap formula campuran bahan bakar seperti formula B5 mengandung kadar air sebesar 0,0033, B10 mengandung kadar air sebesar 0,0036 dan B15 juga mengandung kadar air sebesar 0,0036. Nilai tersebut sedikit lebih rendah dibandingkan dengan nilai kadar air yang terkandung dalam biodiesel murni. Semua nilai sifat fisika-kinim bahan bakar campuran menunjukkan penurunan dalam setiap formula bila dibandingkan dengan biodiesel murni (100%), karena nilai titik uang yang mengalami kenaikan dalam setiap formula campuran sebagaimana diperlihatkan dalam Tabel 2.

<table>
<thead>
<tr>
<th>Sifat Fisika-Kinim</th>
<th>Setan</th>
<th>Biodiesel (100%)</th>
<th>B5</th>
<th>B10</th>
<th>B15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desmasa, 15°C</td>
<td></td>
<td>0.87</td>
<td>0.841</td>
<td>0.846</td>
<td>0.856</td>
</tr>
<tr>
<td>Viskositas, 40°C</td>
<td></td>
<td>0.43</td>
<td>3.25</td>
<td>3.54</td>
<td>2.73</td>
</tr>
</tbody>
</table>

VI. KESIMPULAN

Dari hasil penelitian ini dapat disimpulkan bahwa nilai sifat fisika-kinim bahan bakar campuran dalam berbagai formula seperti B5, B10, dan B15 mengalami penurunan dibandingkan dengan nilai sifat fisika-kinim biodiesel murni kecuali hanya nilai titik uang yang mengalami kenaikan.

Pada umumnya, nilai fisika-kinim bahan bakar campuran seperti deniscen, viskositas, titik uang, titik nyala, nilai asam, nilai penyebutan, bilangan setan dan kadar air memenuhi kriteria yang ditetapkan oleh ASTM D 6751.

VI. REFERENSI
